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Let P = {1, 29 39 59 ... } be the set of Fibonacci numbers, where F2 = 19 
F3 = 29 and thereafter Fn = Fn_1 4- Pn_2. We shall examine the function pp(n)9 
which we define to be the number of ways to additively partition the integer n 
into (not necessarily distinct) Fibonacci numbers. 

We first consider the generating function for p (ri). By elementary parti-
tion theory9 we have 

EP,(^n = n —— - n —l——. -a) 
TOO a G F 1 - Xa rn>2 1 - x

Fm 

E q u i v a l e n t l y 9 

( n (1 - xF*)\ X pF(n)** = 1. (2) 

We may expand the infinite product as a power series 

n a - xF«) = z vm> o) 
m>2 m^o 

where am counts the number of partitions of m into an even number of distinct 
Fibonacci numbers9 minus the number of partitions of m into an odd number of 
distinct Fibonacci numbers; we may write this as 

am - p*(m) - p°{m). (4) 

We shall see later that knowledge of the terms am will lead us to a recursion 
relation for p (n) . With this objective in mind, we prove the following, 

Theorem: Let 
k 

Pv = II (1 - xFm) when k > 29 

K m= 2 

and set P, = 1. Let ZL = P,,, + P " 1 be the nth Lucas number. Then 

Pw = II (1 - xFm) = 1 - a: - x2 + £ xLkPk_2, 
m>2 k>3 

First proof: This proof is combinatorial in nature. First consider the partial 
products Pj,. When expanded as a power series of the form 

pk = t <4w*m> 
m= 0 
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the coefficients a)jp represent the same thing as the am» except that the parti-
tions are now restricted to Fibonacci numbers not exceeding Fk. It is evident 
that a^ = am for all m such that 0 < m < i^+1,by inspection of (4). We shall 
use this fact later. 

We may partition an integer n into distinct Fibonacci numbers in one par-
ticular way by first writing down the largest Fibonacci number not greater than 
w, subtracting, and iterating this process on the difference. For example, 

27 = 21 + 5 + 1. 

See the references listed at the end of this paper for a more detailed discus-
sion of these points. 

For simplicity of notation, we will represent a partition of a number into 
distinct Fibonacci numbers as a string of l's and Ofs,with the rightmost place 
corresponding to F2 = 1 , and each succeeding place corresponding to the next 
Fibonacci number. In the above example, 

2 7 « l « 2 1 + 0 - 1 3 + 0«8 + l-5 + 0*3 + 0-2 + l-l, 

which we may write more compactly as 
(8) 

27 : 1 0 0 1 0 0 1, 

where the (8) signifies that the 1 below it is the coefficient of FQ = 21. 
The first few terms am for m = 0, 1, 2, and 3 can be obtained by direct 

calculation of the first few P^; they are seen to be 1, -1, -1, and 0, respec-
tively. Now let n ^ 3; our objective will be to characterize the terms am in 
the range Ln < m < Ln + 1. As Ls = 4, this will give us am for every nonnegative 
m. Since n > 3, we have a partition of Ln + 1 obtained in the above manner (from 
here on, all partitions are into distinct Fibonacci numbers, unless otherwise 
stated): 

in) 
Ln + 1 : 1 0 1 0 0 0 ••• 0 

Thus, we have the following nine possibilities for partitions of 777, where 
Ln < m < Ln + 1: 

in) (n) in) 
(a) 1 0 0 1 x ... x (d) 0 1 1 0 x ... x (g) 0 0 1 1 x ... x 
(b) 1 0 0 0 x .«. x (e) 0 1 0 1 x ••• x (h) 0 0 1 0 x •«• x 
(c) 0 1 1 1 x • • • x (f) 0 1 0 0 x • • • x (i) 0 0 0 x x ... x 

The x1s indicate "we don't care which digits go here." 
In the above list, we may find a one-to-one correspondence between the par-

titions in (a) and the partitions in (c). Given a partition beginning with 
1 0 0, we may replace these three digits with O i l . Both strings will have 
equal value because Fn + 2 = Fn + 1 + Fn. However, out of each of these pairs of 
partitions, one is a partition of even cardinality, whereas the other is odd, 
since they are different only in their first three places. Hence, these par-
titions will cancel each other out when we compute am using equation (4) . Sim-
ilarly, there is a one-to-one correspondence between partitions of type (b) and 
of type (d), and they cancel out for the same reason. Partitions of the forms 
(f) and (g) differ only in the positions corresponding to Fn+19 Fn, and Fn_1; 
they cancel each other out in the same way. Partitions of the forms (h) and 
(i) are excluded from possibility. To see this, recall that 
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Fx +F2 + ••• +Fk = Fk+2 - 1. (5) 

Thus, the largest number expressible in the form (h) is 

Fn + Fn - 2 < 2F„. 

B u t Ln =Fn + 1 +Fn_lt so 

Ln = Fn + 2F„_1 > F„+ Fn_1 + Fn_2 = 2Fn. 

Thus, if m is expressible in the form (h) , then m < Ln9 contrary to assumption. 
Similarly9 if m is expressible in the form (i) , then m < Fn+1 - 2, which is 
less than Fn + 1, which in turn is less than Ln, again a contradiction. 

Therefore, the only class of partitions of m which will contribute to the 
right-hand side of (4) are those of the form (e) . But the leftmost four places 
in (e) form our partition of Ln; therefore, the x ••• x in (e) must represent 
a partition of m-Ln into distinct Fibonacci numbers of size less than or equal 
to n - 2. Conversely, given any such partition of m - Ln, we can construct a 
partition of m of the form (e). Since both partitions in this correspondence 
are of the same parity, i.e., either both are partitions into odd numbers of 
Fibonacci numbers or both are partitions into even numbers of Fibonacci num-
bers, we deduce from (4) that 

#r _. = <2m » whenever 0 < m < L„ , . (6) 

We have thus proved the theorem. 

Second proof: This proof is analytical. We require the following two results: 

Let A - a19 a2, ... be an arbitrary set of positive integers. If \q\ < 1, 
then 

n — l - — = i + £ ^ , (7) 
aeA (1 - zqa) i>i(l - zqai)(l - zqai) • • • (1 - zqa*) 

and 
I I (1 + zqa) = 1 + E (1 + zq*1) '" U + zqai^)zqai. (8) 

aeA £>x 

Proof of (7): We consider the partial products. Clearly, 

1 = x , a?*1 

(1 - zqa±) (1 - zqai) 

Now suppose that 

n — i = i + E - • 
i = 1 (1 - zqai) ^ = 1 ( 1 - zqai)(l - zqa2) • • • (1 - zqa*) 

Then 

" f f — l - — - ( f t — i — V i +
 zqa"+1 ) 

t = 1 (1 - zqai) V"1 (1 - zqai) A (1 - zqa» + i)J zqai) V - 1 (1 - zqai) I \ (1 - zql 

n zqai zqa*+^ n i 
= 1 (1 - zqai) • - . (1 - zqa±) (1 - zq°n+1 ) i = 1 (1 - zqa*) 
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n + l 

i + E 
zq"-^ 

* = 1 (1 - zqa±) ••• (1 - zqai) 

By induction on n, the partial products on the left-hand side of (7) are equal 
to the partial sums on the right-hand side. As \q\ < 1, the sum converges. 
This proves (7). 

Proof of (8): The first partial product is clearly the first partial sum. 
So suppose that 

Then 

.11 (1 + zqa-) = 1 + £ (1 + zclai> ••' C1 +zqai-1)zqa 

i = l 

n+l / n \ 
n (1 + zqa<) = 0 ( 1 + 3<7a*))(l + zqa*+i) 

i=l V = l / 

= 1 + £ (1 + zqai) • • • (1 + zqa<-i)zqai + zqa"^ O (1 + zqai) 

n+l 
= 1 + £ (1 + zqai) ••• (1 + zqa*-i)zqaK 

i = l 

By induction on n, this proves (8). 

The following argument is due to the referee. 

In (8) we set z = -1, q = x9 and A = Fi 
EI (1 - arF-) = 1 - x - x2 + x 3 - £ ( 

m>2 m>3 

= l-X-X2+X3- £ ( 
m^3 

+ E ( 
777^3 

= 1 - x - x2 + * 3 - £ ( 
777^3 

+ E ( 
777^3 

+ E( 
777^3 

xF*) 

xFn 

xF>) 

xF>) 

- xF>) 

- xF")xFm+1 

- ar^- l)** '" '*1 

- x }x 

- xFm~2 )xLm 

- X ^ " 1 )XF"> + * 

= 1 - a; - x2 + £ (1 - / 2 ) • •• (1 - x F - - 0 ^ L m . 
777^3 

This proves the theorem. 

Corollary: For all m > Os aOT is either 1, -1, or 0. 

Proof: We have already seen that this is true for 777 < 3. Now the degree of 
P^_2 is 1 + 2 + 3 + • • • + Fjc_29. or Ffc - 2, which is clearly less than L% + 1 - L^9 
which equals Lk_1. What this tells us is that the polynomials on the right-
hand side of the theorem add together without overlapping. Thus9 we only need 
to show that each PT, has coefficients a^ = 0, ls or -1 for all m. 
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We do this by induction on k* Clearly9 it is true for k = 1, as P1 = 1. 
Suppose, then, that a^k) = 1, -1, or 0 for all m and all k < n. By the defini-
tion of Pn, it is clear that the first Fn + 1 coefficients of Pn are identical 
to those of P^; in other words, 

am = a™ for all m such that 0 < m < Fn + 1* 

Hence, by the theorem, the first n + 1 terms a£ are the coefficients of the 
partial products Pk with k such that L^ < Fn + 1; this includes all k less than 
n - 2 because £n_3 < Fn + 1 < Ln_2. By the induction hypothesis, the first Fn + 1 
coefficients are either 1, -1, or 0. 

Now recall that Pn is a finite product of "antipalindromic" polynomials of 
the form (1 - xFk)* Thus, we have 

« « - (-Dn+v;>+2.2_m, (9) 
whenever both subscripts are positive, since the degree of Pn is Fn + 2- 2. But 
&n + i ^ ^(^n+2 "-2)» so the first half of the coefficients in Pn are 1, -1, or 
0. By (9), so are the last half. By induction, all Pk's have coefficients 1, 
-1, or 0. By the theorem, all terms am are 1, -1, or 0. This proves the cor-
ollary. 

By equating like terms on both sides of (2) , where we have evaluated the 
product P as the power series (3), we obtain, for all n ^ 0: 

a0PFW + ̂ iPF(^ - 1) + '*' + an-lPF^ + a n M 0 ) = °> 

where pF(0) = 1 in accordance with the power series (1). This yields a recur-
sion for p (n) with all coefficients ak equal to 1, -1, or 0. 
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