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In a previous contribution to this journal [1],. the author showed how the 
Fibonacci ratio arises in the solution of a particular thermodynamical problem, 
namely, the calculation of the entropy of a chain of electrons localized onto 
lattice sites with density one, and with the constraints that half the lattice 
sites may contain at most two electrons each, while the other half may contain 
at most only one electron each., The use of the thermodynamical grand-canonical 
formulation [1], while simplifying the calculation, greatly obscured the purely 
combinatorial nature of the problem, which we think is by itself a fascinating 
one, and which we purport here to present. 

The problem in [1] might be restated as follows: Given 2/1/ different boxes, 
and 2N identical coins, with half the boxes containing at most two coins each, 
and the other half containing at most one coin each, in how many different ways 
can one arrange or put the 2N coins into the 2N boxes, as N -> °°? Although a 
single coin may be put into a box in two different ways, as head or tail, we 
shall agree that once we put two coins into a box we shall not inquire as to 
which is head or which is tail, and shall count that arrangement as only one. 

With this understanding, it is straightforward to show, in a purely combi-
natorial manner, that the total number of arrangements A(N) .of the 2N coins in 
the 2N boxes, is given by 

«» - *"&-(£)(»'- *)• 
for N = 1, 2, 3, ... . The above expression is exact and holds for any N > 1; 
a proof of (1) is given in the text. 

The Fibonacci ratio arises from (1) through the "entropy" S(N) associated 
with the number of arrangements A(N), i.e., 

S(N) = In A(N), (2) 

and the extensive property of the entropy in the thermodynamic limit (#-*«>), 
i.e. , 

lim ^P- = In k9 with k = f5, (3) 

a constant independent of N9 where here / E (l+75)/2 is the positive Fibonacci 
ratio. 

In the remainder of this paper we give the proofs of Equations (l)and (3). 
Equation (1) can be proved by the use of the well-known generating function 
method [2] of combinatorial analysis. 

Thus, A(N) will be the coefficient of an x2N in the expansion in powers of 
x of the appropriate generating or enumerating function, 

G(x) = (1 + 2x)^(l + 2x + x2)N = (1 + 2^)^(1 + x)2N . (4) 
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In the enumerating function G(x) in (4), the enumerating factor (1 + 2x)N takes 
account of the N boxes that contain at most one coin each, while the enumera-
ting factor (1 + x)2N takes account of the 71/ boxes that contain at most two 
coins each. But, 

The coefficient of x2N will thus be given by the sum of all the terms in (5) , 
such that I + m = 271/, i.e., by 

y?2N-m( N \(2N\ 
,tV \2N - m)\m /' 
2N 

L 
m = N 

which proves Equation (1). 
We now proceed to give the proof of Equation (3) . When 71/ -> °°, each term in 

the right-hand side of Equation (1), with 71/ ^ k ^ 271/, is a product of a very 
rapidly increasing function of k9 namely [(2/1/ - k)l]~2, times a very rapidly 
decreasing function of k, namely [2kkl(k - 71/) I]"1. In the thermodynamic limit, 
71/ -*- a>, the product of the two functions will have an extremely sharp maximum 
for some value of k9 with N < k < 2N. In the limit 71/ •+ °°, the entire right-
hand side summation in Equation (1) can thus be replaced by the maximum term in 
the same summation, in an asymptotically exact manner. 

We will then have 

S(N) 1 ' 2N 

N 
where 

1 / ZN \ 
2 I n 2 +~ l n ( £ P ( k ; N)\ , (6) 

and hence 

SW - o -.- o _L. i ^ i r l im - y - = 2 In 2 + l im - [ I n P(k; N)]mXm, (7) 

where we have used ln[P(fc; ^ ) ] M a x > = [In P(k; 71/)]Max>. But 

In P(k; N) = -k I n 2 + ln(271/) ! - In kl - ln(2717 - k) I 

+ In 71/! - ln(271/ - k) I - ln(k - N) ! , (8) 

and by the Stirling approximation, we have that (for 71/ -> °°) 

I n 71/! = 71/(ln 71/ - 1) + - | I n 71/ + CN, ( 9 ) 

where <?# is a number of the order of unity. 
Then, we will obviously have that 

lim j[ln P(k; 71/) ] M a x = ["lim ̂  In P(&; 71/)] 
N+°o N nax- LN-^oo N J Max. 

= il±mh-k In 2 - fc(ln fe - 1) - 2(271/ - k) (In(271/ - fc) - 1) 

- (k - N)(ln(k - N) - 1) + «(il?)]l = [0>{k; ^ ) ] M a x . , (10) 
/ Max. 
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where 

Q(N) = 2/1/ In 2 + 3/1/(1x1 N - 1) (11) 

is a function of /!/ only. 
It is important to notice that the terms in 

~ In N + CN 

in the Stirling approximation in (9) and the corresponding ones for (2/1/ - k) ! , 
kl, and (k - N)I contribute nothing to the limit in (10), since, typically, 

In /!/ + <?. ) - • • 
To find the maximum of the function £P(k; N) defined in (10), we find the 

value of k9 such that 

Jr^(/<; N) = 0, (12) 

where N is considered as a parameter. This value of k is then substituted back 
into 0>(k; N) to give (0>(k; ilOW-

Interchanging the derivative with the limit in (10), Equation (12) leads to 

- I n 2 - In k + 1 - | + 2(ln(2/l/ - &) - 1) 

+ 2 { i ^ t -ln(^ - w +1 (fc - /!/) 0 , 

-In 2 - In k + 2 ln(2/l/ - k) - ln(k - N) = 0 , 

(13) 

( H ) 

for k. 
F i n a l l y , Equat ion (14) l e a d s to 

k 2 
= 1, (2/1/ - k)' 

2k(k - N) 
or the quadratic equation 

(i)2 +(4)-1 = 0' (15) 

for k. Because k must be a positive number, the only appropriate solution of 
(15) is 

^=J> (N <k< 2N), 

where / is the positive Fibonacci ratio. Hence, we will have 

(0>(k; N)) Max. - ;J-iln «/ 
A7-v oo J-V 

2£ 
f 1„2-f(1»(f)-1)-2(»-f)H--f)-') 

- (f - ")Hf - »H+ 
Q(N) 

(continued) 

1986] 2h3 



THE FIBONACCI RATIO IN A THERMODYNAMICAL PROBLEM 

= - j In 2 - j In 2 + j> In / + | - ^(f - 1) (In 2 + ln(/ - 1) - In / - 1) 

- (2 ~ -^(ln(2 - f) - In / - 1) + 2 In 2 - 3 

= -2 In 2 + 3 In / + A ln(/ - 1) - 4 ln(/ - 1) - | ln(2 - f) + ln(2 - / ) . 

(16) 

By using the relationships ln(/ - 1)= -In f and In(2 - f) = -2 In /, which hold 
true for the Fibonacci ratio f, (16) finally leads to the remarkably simple 
result 

(0>(k; W M a x . = "2 In 2 + 5 In /, 

or, finally, 

l i m ~l7 = 5 In /. 

This proves Equation (3) and coincides, of course, with the result obtained in 
[1] through the use of the grand-canonical formalism. 
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