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1 . INTRODUCTION 

In Hoggatt and Bicknell [1], the Fibonacci sequence {Rn} of order v (> 2) 
was defined by 

Rn+r = Rn+r-l+Rn+r-2~*~°e°+Rns R± = 1s R2 = 1, (1-1) 
with 

R-(r-2) = *-(i-3) = • • • = - ^ = /?„ = 0. (1.2) 

Using the method of a generating matrix for {Rn}, they obtained the deter-
minantal identity 

Rn+ r- 1 

•"n+r- 2 

Rn+l 

Rn 

Rn +r-2 ' ° 

Rn+ r-3 • * 

Rn 

Rn- 1 

Rn + ]_ 

• #n 

•" w - r + 3 

•^w- r+ 2 

Rn 

Rn- 1 

Rn- r + 

Rn- r + 

which is an extension of the Simson formula (identity) for the simplest case 
V = 2 for Fibonacci numbers. 

Carrying these numbers Rn through to coordinate notation (writing x-± = Rn* 
x2 ~ Rn+i> x3 = Rn+ 2» • • B » xr ~ Rn+r-.i)* t n e author [4] showed that (1.3) could 
be interpreted as one or more hypersurfaces in Euclidean space of r dimensions 
(the number of hypersurface loci depending on n). The cases v = 29 39 4 were 
delineated in a little detail ([3], [4]). 

It is now proposed to extend the results in [3] and [4] to the case of a 
Lucas sequence {Sn} or order rs i.e., to construct a determinant analogous to 
(1.3) and to interpret it geometrically as a locus in r-space. 

From experience3 we should expect the algebraic aspects of {Sn} to resemble 
those of {i?n}. Nevertheless, there are sufficient variations from the Fibonacci 
case to make the algebraic maneuvers, which constitute the main part of this 
article, a challenging and absorbing exercise. 

Because of complications associated with the fact that S0 [to be defined in 
(2.1)] is nonzero, whereas R0 = 0, the method used by Hoggatt and Bicknell [1] 
for {Rn} is not applied here for {Sn}, However, our method is applicable to 
{i?n},as we shall see, provided we add to the definitions in [1] the injunction 
R-(r-l) = 1. 

Schematically, this paper consists of two parts. Part I is organized to 
secure results for the Lucas sequence which correspond to those for the Fibo-
nacci sequence. On the basis of this knowledge, in Part II we briefly gener-
alize the results for a sequence which contains the Fibonacci and Lucas (and 
other) sequences as special cases. 
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PART I 

2. LUCAS SEQUENCE OF ORDER r 

Define {Sn}, the Lucas sequence of order r (^2) by 

Sn + r ~ Sn + v- i + Sn+ r- 2+ " * • + Sn, S 0 = 2, S± = 1, 

with other initial conditions 

\S_l = 5_2 = ••• = &-(p-2) = °  

^-(r- 1) = _ 1-

Simplest special cases of {Sn} occur as follows: 

Jn+ 2 ^n+1 + Ln> Lo - 2, Lx - 1, L_ -1; 

Mn+3 = Mn+2 + Mn+l + ^ n > ^ 0 = 2 ' M l = X> M-1 = ° ' M - 2 = " ^ 

2, ^ = 1, 
^ ! - 0, N_3 = -1. 

The first few numbers of these sequences are: 

K Li L2 L3 h Ls Le L7 Ls Ls Lio •• 
|2 1 3 4 7 11 18 29 47 76 123 . . 

)MQ M± M2 M3 Mh M5 Ms M? M, Mn M, 9 i J10 

10 19 35 64 118 217 399 

N0 N± N2 N3 NLi N5 NQ N? N.t 
1 

9 10 

12 22 43 83 160 308 594 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.3)' 

(2.4)' 

(2.5)' 

The determinant of order r (which we may here call the Lucas determinant 
of order r, corresponding to that in (1.3) for the Fibonacci sequence of order 
r) is 

Ay, = 

Sn + r - 1 

Sn + r - 2 

Sn + 1 

Sn 

Sn + v - 2 • • 

Sn + v - 3 • • 

Sn 

Sn- 1 

Sn+ 1 

Sn 

Sn - r + 3 

&n - r + 2 

Sn 

Sn~ l 

Sn - r + 2 

Sn-r+ 1 

(2.6) 

Notice the cyclical nature of the elements in the columns of Ar. Conse-
quently, there is symmetry about the leading diagonal of Ar. Both of these 
properties for {Sn} are also features of the Fibonacci sequence {Rn}• 

Special notation: We use the symbol r^ to mean the operation of subtract-
ing from row i the sum of all the other rows, in a determinant of arbitrary 
order. An operation such as r^ may be called a basic operation. Clearly, r^f 
utilizes the defining recurrence (2.1) with (2.2). 
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It is now necessary to introduce the concept of a basic Lucas determinant. 

3- BASSC LUCAS DETERMINANTS 

Let us define the basic Lucas determinant of order r, 6r9 as 

(3.1) 

All elements in a given upward slanting line are the same, e.g., all the 
elements in the reverse (upward) diagonal are S0 (=2). Except for the element 
(= -1) in the bottom right-hand corner, all the elements below the reverse 
diagonal are zero. 

Observe the cyclical nature of elements in the columns, remembering initial 
conditions (2.2) applying to symbols with negative suffixes. 

Of course, (3.1) is only the special case of (2.6) when n = 0. 
Concerning basic Lucas determinants, we now prove the following theorem (a 

determinantal recurrence relation). 

Theorem: (-l)[W2]2r + (-i)*-i,s2 (3.2) 

Proof: Expand 6 in (3.1) along the bottom row to obtain 

6r - (-l)[r/2]2r 

(-l)W21f 

(S1 = 1, S0 = 2) 

by r' 

= (-l)[r/2]2r - (-l)r 2<5r_ j after r - 2 cyclical row interchanges 

= (-1)^2" + (-lf-^.,. 
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Thus, we 

[r = 2] 

[r = 3] 

have, for 

62 = 

«s = 

1 

2 

3 
1 
2 

P > 2, 

2 

-1 

1 
2 
0 

= -22 - 1 = -5 
= -(23 - 3) 

2 
0 
-1 

= -23 + 62 = -23 -
= -13 = 

(3.3) 

(3.4) 
-(2* - 3) 

[r = 4] 6̂  = 

6 3 1 2 
3 1 2 0 
1 2 0 0 
2 0 0 - 1 

2* + 2d + 2Z + 1 
29 = 25 - 3 

(3.5) 

[p = 5] 

[p =6] 66 = 

12 6 
6 3 
3 1 
1 2 
2 0 

24 12 
12 6 
6 3 
3 1 
1 2 
2 0 

3 
1 
2 
0 
0 

6 
3 
1 
2 
0 
0 

1 
2 
0 
0 
0 

3 
1 
2 
0 
0 
0 

2 
0 
0 
0 
-1 

1 
2 
0 
0 
0 
0 

= 

2 
0 
0 
0 
0 
-1 

25 + = 25 + 24 + 23 + 22 + 1 
= 61 = 26 - 3 

-2b - 65 
_26 _ 25 - 21* - 23 

-125 = -(27 - 3) 

(3.6) 

(3.7) 

and so on. 
The emerging summation pattern by which the 8r may be evaluated is clearly 

discernible. Notice that the term 21 (i.e., 2) does not occur in any 6P summa-
tion. 

However, before establishing the value of SY9 we display the following 
tabulated information, for all possible values of P: 

[r/2] 

(1. - 1) + p^i] 

p = hk 

2k \ 
> even 

6k - 2) 

p = 4& + 1 

2fc) 
> even 

6k) 

v = kk + 2 

2fc + 1 ) 
>odd 

6fe + 1 j 

p = kk + 3 

2fc + 1) 
>odd 

6k + 3) 
(3.8) 

From (3.8), we deduce 

(_1)[W2] = (_l)r" l+t(r- l)/2]̂  (3.9) 

Invoking this result and applying (3.2) repeatedly, we may now calculate 
the value of $„. 

Theorem: 6P = (-l)[p/2J (2P+ l - 3). (3.10) 
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Proof: Sr = ( - l ) [ " / 2 ] 2
r + ( - l ) " - 1 { ( - l ) [ ( r - 1 ) / 2 ] 2 r - 1 + (-1)1" 2<5r_ 2} by ( 3 . 2 ) 

= (-l)IW2] {2^ + 211-1} - 6 r _ 2 (a) by (3 .9 ) 
= ( - l ) [ ' / 2 ] { 2 ' + 2 1 " 1 } - ( _ l ) f < ' - 2 ) / 2 ] { 2 » - 2 + 2 r - 3 } + ^ _ ^ fey ( a ) 

= ( - l ) t ^ 2 l {2F + 2 r " ! + 2 p - 2 + 2 r~ 3} + 6 P - 4 

= (-1)[*V2] { 2 r + 2 r " 1 + 2 r " 2 + • • • + 2 3 + 2 2 + 1} u l t i m a t e l y , 
by (3 .3 ) o r 
by (3 .4 ) 

= ( - l ) l r / 2 H 2 r + 2r-1 + 2P~2 + • • • + 2 3 + 2 2 + 2 + 1 - 2} 

= ( - l ) ^ ' 2 ^ ———— - 1> summing the f i n i t e geomet r ic p r o g r e s s i o n 

= ( -1 )^ /2 ] (2r+l - 3 ) . 

Checking back shows that the special cases of Sr listed in (3.3)-(3.7) have 
values in accord with (3.10), as expected. 

4. EVALUATION OF LUCAS DETERMINANTS 

Next, we show that [cf. (2.6), (3.1)] 

AP = ±6P. 

To illustrate the ideas involved in the proof we shall give for this con-
nection between AP and 6P, suppose we take r - 5, n - 3, i.e., r is odd, This 
implies that we are dealing with the integer sequence 

P_if £-3 ^-2 ^-1 ^0 ^1 S2 $3 ^4 ^5 ^6 S7 ^8 

0 0 0 1 12 24 46 91 179 
(4.1) 

Perform the basic operations r^, rJJ» rl successively on the determinant A5 

when n = 3 to derive: 

91 
46 
24 
12 
6 

46 
24 
12 
6 
3 

24 
12 
6 
3 
1 

12 6 
6 3 
3 1 
1 2 
2 0 

1 

3 
1 
2 
12 
6 

1 
2 
0 
6 
3 

2 
0 
0 
3 
1 

0 
0 
0 
1 
2 

0 
0 
-1 
2 
0 

12 
6 
3 
1 
2 

6 
3 
1 
2 
0 

3 
1 
2 
0 
0 

1 
2 
0 
0 
0 

2 
0 
0 
0 
-1 

[= 61, 
see (3.6)] 

(4.2) 

&i 
In A5, the leading term 91 (= S7) is reduced to the leading term 12 (= Sh) 

in 65 by the 7-4 = 3 (= n) basic operations specified. Because of the cycli-
cal nature of A5, these basic operations act to produce a determinant &5 = A5 

whose rows are the permutation 

[' 2 6 3 1 2 " 
3 1 2 12 6. 

of the rows of 65. Due to the fact that r is odd, this cyclic permutation is 
even. Expressed otherwise, 6* is transformed to 85 by an even number of row 
interchanges, so the sign associated with S5 is +, i.e., 65 = 65. Hence, A5 = 65. 
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If n > 5, the cyclic process of basic operations is continued until the 
basic determinant 65 is reached. Obviously, the actual value of n is irrele-
vant. 

The reasoning inherent in the case r = 5 applies equally well to the case 
when r is arbitrarily odd. Consequently, for r odd, AP = 6r always. 

If r is even, the situation is a little more complicated. 
For illustrative purposes, let us examine the case r = 4. Substituting 

the numbers in (2.5)' into (2.6) when n - 3, 4, 5, 6 in turn, we readily cal-
culate that A^ is reduced to the four 6* whose rows are respectively the per-
mutations 

[6 3 1 2] [6 3 1 21 [6 3 1 21 [6 3 1 2l 
|_3 1 2 6_T |_6 3 1 2J5 L2 6 3 lj' [l 2 6 3J 

of the rows of Sh (and this is true here for n = 4& - 1, 4/c, 4& + 1, 4& + 2, 
respectively (fc = 1, 2, . . . ) . 

As these permutations are successively odd, even, odd, even, it follows that 
S* = ~&k> 5^, -6^, 64 in turn. Thus, A4 = ±Sh, depending on n, namely, A4 = 64 
when n is even, while A^ = -6h when n is odd. 

Armed with this knowledge, we can now attack the general problem, i.e., 
when v and n are arbitrary integers. 

First, we establish the following result: 

Theorem: Ar = (-l)m6P, where m = nr(r - nr), nf = n mod r. (4.3) 

Proof: In (2.6), the leading term Sn+r_i in Ar is diminished to the leading 
term Sr in 6P by n + r - 1 - (p - 1) - n basic operations r[, P2r, ..., r„ which 
produce the determinant 6%. Simultaneously, 5P_ x drops n places in the first 
column of 6*. 

To restore the cyclical order in the first column of 6* to the basic cycli-
cal order of the first column in 6r, beginning with Sr_ l5 it is necessary to 
effect n(r - n) interchanges of sign to account for the v - n terms below and 
including Sr- i, and the n terms above Sr_ j. 

When n > r, we reduce n mod r. 
Each interchange accounts for a change of sign in the value of the deter-

minant . 
When r is odd, the product n(r - n) is always even, no matter what the 

value of n is. 
But when r is even, the product n(r - n) is odd if n is odd, and even when 

n is even. [That is, when r is a given odd number there is only one value of 
Ar, whereas for a given even v there are two values of hv depending on the 
value of n.] 

Thus, 

Ar = (-l)mSr9 where m = nr(r - nr), n ' E n mod v. 

Combining (3.10) and (4.3), we have the following theorem as an immediate 
deduction. 

Theorem: Ar = (-lf+ [r/2] (2r+ x - 3), where m = n'(r - nF) , nT E n mod r. (4.4) 

For example, 

when r = 5, n = 3: A4 = (-l)3x2+2(26 - 3) from (4.4) 
= +61 
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in conformity with (4.2) and (3.6). 
On the other hand, 

when v = 5, n = 4: A4 = (-l)lx3+2(25 - 3) from (4.4) 
= -29 

as we have seen in the discussion preceding (4.3). 
Applying (4.4) to a random choice r = 6, n = 8 (but not so random that the 

computations are unmanageable!), we discover on substitution that 

A6 = (-l)2x4+3(27 - 3) - -125, 

as may be verified by direct calculation. 
Our result (4.4) for a Lucas sequence of order r should be compared with 

the Hoggatt-Bicknell result (1.3) for the corresponding Fibonacci case. 

5- HYPERSURFACES FOR THE LUCAS SEQUENCES 

Geometrical interpretations can now be given to the identity (4.4) and its 
specializations for small values of r. The reader is referred to [3] and [4] 
for details of the geometry relating to Simson-type identities for Fibonacci 
sequences of order r. 

As this corresponding work for Simson-type identities for Lucas sequences 
of order v parallels the results in [3] and [4], we will content ourselves here 
with a fairly brief statement of the main ideas. 

Write Xi = Sn9 x2 = Sn+i9 . .., xv = Sn+r~i. Represent a point in r-dimen-
sional Euclidean space by Cartesian coordinates (xls x29 . .., xr). 

Then9 we interpret (4.4) as the equation of a locus of points in p-space 
which has maximum dimension r - 1 in the containing space. Such a locus is 
called a hyper surf ace. 

Each of the loci given by the simple linear equations xx - 0, x2 - 0, ..., 
xr = 0 is a "flat" (linear) space of dimension r - 1, and is called a (coordi-
nate) hyperplane. 

Hypersurfaces of the simplest kind occur for small values of r. In accord 
with our theory, there will be one hyper surf ace when r is odd, and two when r 
is even. 

Examples of hypersurfaces for {Sn} are: 

r = 2 (conic): x\ + x±x2 - x\ = 5(-l)n 

r = 3 (cubic surface): xl + 2x\ + x\ + 2x\x2 + 2xlx\ - 2x2x 

+ /y» *- rf _ /V» /y» _ O fY* rf* ry% —. ,_ 

In passing, we note that (5.1) expresses the well-known Simson-type iden-
tity for Lucas sequences of order 2, namely, 

^ + A - i " Ll = 5(-D"+1. (5.1)' 

Moreover, the matrix 

^1 2" 

.2 -1. 

whose determinant 62 is associated with identity (5.1) f, has several interesting 

2 
3 

13. 

( 5 .1 ) 

( 5 . 2 ) 
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geometrical interpretations (relating to: angle-bisection, reflection, vector 
mapping). (See Hoggatt and Ruggles [2].) 

Observe that if we replace x19 x2, x3 by x, y9 2, respectively, in (5.1) 
and (5.2), we obtain equations whose forms, except for the numbers on the right-
hand sides, are identical to those given in [3] and [4]. However, this formal 
structure camouflages the fact that the corresponding equations of the conies 
and cubic surfaces, for Fibonacci and Lucas sequences, are satisfied by differ-
ent sets of numbers. 

Carrying further our comparison with the results for Lucas and Fibonacci 
sequences, we obtain, in the case r = 4, a nasty equation (refer to [4]) for a 
quartic hypersurface in four-dimensional Euclidean space. And so on for hyper-
surfaces in higher dimensions. 

Sections of these loci by coordinate hyperplanes yield plane curves of 
various orders (cubics, quartics, quintics, sextics, and, generally, curves of 
order r). Refer here also to [4]. 

This completes our summarized outline of the geometrical consequences of 
of the determinantal identity (4.4) for Lucas sequences paralleling those for 
the Fibonacci sequences. 

With the notions of Part I in mind, we are in a position to examine closely 
a more general sequence of order r which has the Fibonacci and Lucas sequences 
of order r as special cases. 

PART II 

Only a brief outline of the ensuing generalization, which parallels the 
information in Part I, will be given. 

6. A GENERALIZED SEQUENCE OF ORDER r 

Let us now introduce the generalized sequence {Hn} defined by the recur-
rence relation 

tiyi + p - 1 ~"~ ^n + p - 2 • • • + t±n , £ZQ — (2 , ri -^ (6.1) 

with further initial conditions 

-(r-2) 

#_o O- l) a. 
(6.2) 

Interested readers might wish to write out the first few terms of these 
sequences for different values of r. For example, H takes on, in turn, the 
values 5a + 8b, 11a + 13b, 14a + 15b, 15a + 16b9 and 16a + 16b for successive 
values r = 2, 3, 4, 5, and 6. 

As in (2.6), the generalised determinant of order r is defined to be 

"•n+ r - 1 

"•n+r- 2 

Hn+ 1 

2?i+ v- 3 

H„ 

%n+ 1 

Hn 

" n - r + 3 

n- 1 

^n- r+ 2 

(6.3) 
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Evaluation of Dr is the object of Part II. 

Define, as in (3.1), the basic generalised determinant of order r, dr, to 
be obtained from (6.3) when n = 0. That is, 

dr = (Dr)n=0. (6.4) 

Then, the following simplest basic generalized determinants may be readily 
calculated by expanding along the bottom row: 

[p = 2 ] d2 = -a2 + (Z> - d)b ( 6 . 5 ) 

[r = 3 ] d3 = -a3 - (b - a)d2 = - a 3 + (b - a)a2 - (b - a)2b ( 6 .6 ) 

[r = 4] dh = ak + (b - a)<i3 
= a4 - (Z? - a )a3 + (2? - a ) 2 £ 2 - (Z> - a)3Z? (6 .7 ) 

[r = 5] d5 = a 5 - (2? - a ) ^ 
= a 5 - (2> - a ) a 4 + (Z> - a)2Z)3 - (b - a) 3 a 2 + (2> - a ) ^ (6 .8 ) 

[ r = 6] cZ6 = - a 6 + (Z> - a ) J 5 
= - a 6 + (2? - a ) a 5 - (b - a) 2a^ + (Z? - a ) 3 a 3 

- (Z? - a)ha2 + (b - a)5b ( 6 . 9 ) 
and so on. 

A developing pattern is clearly discernible. 

Calculation of dr follows the method employed in (3.2). 

Although only an outline of the theory in Part II is being offered, it is 
generally desirable for clarity of exposition to exhibit the main points of the 
calculation of dr in a little detail, even at the risk of some possibly super-
fluous documentation. 

Theorem: dr = (-1)
[r/2]{ar+ l + (-l)r~ *(a + b)(b -a)r}/b» (6.10) 

Proof: Expand dr in (6.3) and (6.4) along the last row to obtain 

dr = (~l)[p/2^ - (b - a)(-lfldr_l . . . . . . . . (i) 
= (-l)[W2]{ar „ (h _ a)a*'1} - (b - a)2dr_2 by (i), (3.9) 

= ( - l ) [ r / 2 3 { a * - (Z> - a ) ^ " 1 + (6 - a)2ar'2 - (b - a)3ar~3 + . . . 
+ (» l ) p - 2 (Z? - a ) p " 2 a 2 + {-l)r-l{b - a r - i f c 
+ [(~l)r~Hb - a ) p " x a - ( - l ^ - ^ Z ? - a)r-la}} 

= ( - l ) [ p / 2 ] { a p ( l - (b - a)a~1 + (Z> - a ) 2 a " 2 - (Z> - a ) 3 a " 3 + ••• 
+ (-l)r(b - ay~2a-^-2)+ ( - i ) ^ - i ( f c - a ) p ~ 1 a - ( p - 1 ) ) 
+ ( - l )^ - i (Z? - a)r} 

= ( -1 )^ /2 ] L r [ l - (-(& - a)a'l)rl + ( . i j r - i ^ _ a r l 
i 1 - (-(Z? - a)a~1) ) 

- ( - l ) f p / 2 J { a p + 1 + (-l)r-Ha + 6)(fc - a)p}/Z>. 

Repeated use of ( i ) has been made in the proof . A l s o , t he summation f o r -
mula for a f i n i t e geometr ic p r o g r e s s i o n has been invoked. 
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Applying next the arguments used in the evaluation of the Lucas determinant 
or order r9 AP, we easily have 

Theorem: Dr = (-l)mdr = (~l)rn+ [r/2]{ar + x + {-l)T'l{a + b) (b - a)r}/b, (6.11) 

, ( m = nr(r - nr) 
where < , _ , 

\n ' = n mod r. 

Proof: As for (4.3). 

For the Lucas sequence of order p, {Sn}, 

a = 2, b - 1 (so a + b = 3, b - a = -1). 

It is easy to verify that, in this case, 

dr - SP, Dr = AP. 

[Cf. (3.10), (4.4).] 

Coming now to the case of the Fibonacci sequence of order r>, {Rn}, we have 

0, b = 1 (so a + b = 1, b 1). 

It is important to note that, for our theory to be used for {Rn}9 the terms of 
{Rn} with negative suffixes have to be extended by one term in the definition 
(1.1), (1.2) given by Hoggatt and Bicknell [1], namely, 

R-(r- 1) ~ l ' (6.12) 

Augmenting {Rn} by this single element enables us to construct basic Fibo-
nacci determinants of order r, VP, for {Rn} derived from (1.3) analogously to 
those for {Sn} from (2.6). Computation yields 

i . v, •i. vL • i . v , i . vc 

To give some appreciation of the appearance of the Vr, choose r = 6, so 

V6 = 

8 4 2 1 1 0 
4 2 1 1 0 0 
2 1 1 0 0 0 
1 1 0 0 0 0 
1 0 0 0 0 0 
0 0 0 0 0 1 

(= 1) (6.13) 

which is rather simpler than the corresponding form (3.7) for 66. 
Putting a = 0, b = 1 in (6.10), we have, with the aid of (3.9) 

d r = (_l)[W2] + 2-l = (_1)[(r-l)/2]= V p . 

Now it may be shown that m + [(r - l)/2], the power of -1 in (6.11), and 
(p - l)n + [(r - l)/2], the corrected power of -1 in the Hoggatt-Bicknell [1] 
evaluation in (1.3), are both even or both odd. That is 

(_]_)"*+ [r/2] = (_!)(*-l)w+ [(r-D/2]., (6.14) 
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Thus, a = 0, b = 1 in (6.11) with (3.9) give 

D = (_i)W+[(r-l)/2] = (_1)(i"- Dn+ [(p- l)/2] = v 

where Vr is the symbol to represent the Hoggatt-Bicknell determinant (1.3). 
Suppose we check for {Rn} when r = 6, n - 3, i.e., we are dealing with the 

sequence 

(6.15) 
W?-5 *-* *-3 *-2 *-l ^0 *1 R2 R3 ^ ^5 ^6 R7 RB • • • 

(l 0 0 0 0 0 1 1 2 4 8 16 32 63 ... 

Then 

(n = 3 ) : D6 = (-l)3x3+2 = -1 by (6.11), (3.9) 
= (-1)5x3+2 = _x b y ( l 3 ) 

= -V6 = -1 on direct calculation. 

Geometrical considerations similar to those in [4] and in Part I of this 
article are now applicable to the general case of {Hn} when a and b are unspe-
cified, and also to the multifarious special cases of {Hn} occurring when a and 
b are given particular values. 

But we do not proceed ad infinitum* ad nauseam by discussing other classes 
of sequences. Unsatiated readers, if such there be, may indulge to surfeit in 
such an algebraic geometry orgy. 

One further generalization might be contemplated if, in (6.1), we were to 
associate with each Hn+r-j (j = 1, 2, . . . , r) a nonzero, nonunity factor p.. 
However, the algebra involved makes this a daunting prospect. 
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