A FURTHER NOTE ON PASCAL GRAPHS

BHABAN! P. SINHA, SURANJAN GHOSE, BHARGAB B. BHATTACHARYA
Indian Statistical Institute, Calcutta-700 035, India
and
PRADIP K. SRIMANI
Southern Illinois University, Carbondale, IL 62901
(Submitted March 1984)

1. INTRODUCTION

In a recent paper Deo and Quinn [1l], in their search for a class of graphs
to be used as computer networks, introduced Pascal graphs that are constructed
using Pascal's triangle modulo 2 [3]. They derived.a number of useful results
for Pascal graphs and Pascal matrices and, in the conclusion, they made certain
interesting conjectures. The objective of the present note is to find an exact
expression for the number of edges in Pascal graphs of different orders and to
settle one of the conjectures made in [1].

We&have used standard graph theoretic terms [4], [5] in this paper, and the
reader is assumed to be familiar with [1].

2. BASIC CONCEPTS

Definition 1: A Pascal matrix PM, of order n is defined to be an n X n sym-—
metric binary matrix where the main diagonal entries are all 0's and the lower
triangular part of the matrix consists of the first (m - 1) rows of Pascal's
triangle modulo 2. PM,(<, j) denotes the (7, F)*" element of PM,. A Pascal
graph PG, having »n vertices is a graph corresponding to the adjacency matrix
PM, .

Remark: This definition of a Pascal matrix is the same as in [l] in contrast
to that in [2].

Definition 2: The generator polynomial of the m'™™ row, m 2 1, of a Pascal ma-
trix PM, of any fixed order »n 2 m is defined to be a polynomial f,(x) with
binary coefficients such that PM,(m, j) is given by the coefficient of 2771 in
fp(@), 1 <4 < n.

Since PM,(m, m) = 0 by definition, we can write, for a Pascal matrix PM,,
2 m,

g, @) + x"h,(x), for m > m
I =
9, (2 5 for n = m,
where g, (x) and h,(x) are the generator polynomials of the lower and the upper
triangular parts, respectively, of the mth row in PM,. By definition, g,(x)

applies only for m = 2.

Definition 3: The B-sequence of a positive integer n is defined as the strict-
ly decreasing sequence B(n) = (pys Pys «v-s o ) of [, nonnegative integers
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such that
Ly
n=Y 2%,
i=1

where L, is the length of the sequence.

Remarks: (1) The B-sequence of any positive integer »n gives the positions of
1's in the binary representation of # in decreasing order.

(2) The B-sequence of zero is defined to be a null sequence.

Lemma 1: For any Pascal matrix PM, with n 2 m,

(a) For m = 2, g,(x) = nmn a+ xzj).
j€B(m-2)
(b) Form=>=1, h,(x) = Im a-+ xzj).
Jjz0
J¢B(m-1)
Proof:

(a) From the definitions of a Pascal matrix and gm(x),it is apparent that
gn(@) = (1 + x)"" 2, with the coefficients computed in the modulo 2 field, from
which the proof follows.

(b) Since PM, is symmetric, #,(x) will contain xk as a nonzero term iff
Im+ k+1(x) contains x™-! as a nonzero term, k = 0. This is possible if and only
if B(m+ k-1) contains B(m - 1) as a subsequence, i.e., when there is no ele-
ment common to both B(k) and B(m - 1). Hence the claim.

Example: In a Pascal matrix of order n = 30,
Fra@ = (1 +2)(1 +2®) (1 +2%) + 230 +2)(1 + 2?1 + 2%,

Foo@ = (L + ) (1 +2™®)+2°(1 + 2*) (1 + z%).

Remark: For any m, m 2 2, (1 + x) is a factor of g,(x) iff (1 + x) is also a
factor of A,(x), since B(n), n > 0, can contain 0 only when n is odd.

Definition 4: The mth row of PM, will be called the pth instance of all l's in
the lower triangle if m = 2P + 1, p > 1.

3. NUMBER OF EDGES IN PASCAL GRAPHS

Let e(n) denote the number of edges in PG,. Deo and Quinn [1] showed that
e(mn) < |(n - 1)to83],
In this section we find an exact expression for e(n).
Lemma 2: 1In a Pascal graph PG,, where
n=CF+1)+ 4,

for some nonnegative integer p and 1 < 7 < 2P

tex in PG, is given by
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dn) = 2d(<z + 1),
where d(Z + 1) denotes the degree of the (Z + 1)5t vertex in PG,

Proof: 1In PM,, the n'h row has only its lower triangular part and so does the
(2 + D row in PM;,,. Hence, in PM,,

Fo@ =g @ =@+ =1 +x) (1 +a)i-!

Since the coefficients of the polynomials are computed in a modulo 2 field, we
get
2
go(@) = (L +x?) g (x).
Therefore, since 7 < 2P, the number of nonzero terms in gn(x) is twice that in

$+1(x) Hence d(n) = 2d(< + 1). Q.E.D.

If the n'™®™ row of PM, corresponds to the pth instance (p 2 1) of all 1's in
its lower triangular part, i.e., if n = 2P 4+ 1, then we also denote the number
of edges in PG, by E(p), i.e., E(p) = e(2P + 1).

Lemma 3: E(p) =

Proof: E(p) = Number of edges in PG of order (27" Ty 1)

+ Number of edges added due to addition of extra 2P~ 1 vertices
E(p - 1) + 2E(p - 1) [by Lemma 2]

3E(p - 1)

32E(p - 2) = -+ = 3P TE(1).

Now E(l) corresponds to the number of edges in PG,, which is 3. Hence, we get

1l

E(p) = 3. Q.E.D.

Theorem 1: The number of edges in PG, (n > 1) is given by

nl

e(n) = % 29 -

Jj=1

where (pl, Dys +oes an4> is the B-sequence B(n - 1) of length Ln_l.

Proof: Let n -1 =mn, +n, + +++ + n,, where k =1L, 1, ng = 2P0, 1 <4< k.
Hence the (wn; + 1)th row of PM, corresponds to the p,th instance of all 1's in
the lower trlangle, and so by Lemmas 2 and 3,

e(n) = E(p,) + extra edges due to addition of vertices Un 42s = Uy
to PGnl+ 1
=3% 4 2e(n, +my + o0+ oy + 1) = 30 4 260",

where n' = (1 + n,) + ny + -+ + 1. Repeating the process, we get

381 4 2(3p2 + 2e(n’)) [where n'"" =n

e(n) gt + e+ + 1]

1

s 29-1.3%  q.m.p.
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L. DETERMINANTS OF PASCAL MATRICES

We now settle one of the conjectures made in [1] regarding the values of »n
for which the determinant of PM, will be zero.
Let us consider an integer 4 which is either 2 or can be expressed as
A=2 + (a;, +a, + -+ +a)s
where a, = 4 or 8, and a;,; = 4a;, 1 < 7 < k.
We now define the index set I of A as follows:
@, for 4 = 2
I =
{1, 2, ..., k}, otherwise

Let the cardinality of I be denoted by #. It can be verified that for 4 > 2,
we can write

A

]
.
+

™
~
[

for a; = 4 ()

and

t ,
A=2324%, for a, = 8. (2)
=0

Both (1) and (2) also apply for 4 = 2, i.e., for ¢t = 0 as well. Let a} = 2ay,
for 1 < 2 < k. We use an arbitrary subset I'={j,, J, ..., dp} of I to denote
different integers generated from 4 as follows:

A. . =24 Y al+ Y a;.
Jydy e dp ier 7 teloT T
When {jl, Ty vres Jp}t = @, AWhjz'“<G = 4 itself.
Let P(I) be the power set of I. We define the expansion set S$(4) of 4 as

s@) =455 4| For s 3} € PODL

Example: For 4 = 2, S(4) = {2}.
For A =22, a; =4, a, =16, a] =8, a
4, =2+ a +a, = 26,
4, =2 +a, +al =38,
A, =2 +a +a) =42,

and S(4) = {22, 26, 38, 42}.
The r-distant co-expansion set T,(4A) of A is defined as

Tn(4) = {Axgjz.ngg Ay, € S(A)}-

L9lyven T
We construct a set of polynomials of the form F.}z jp, where
1y dg

{215 Tys eoes Tpt €I, {dys oo wvvs dgb C I, 1€ {iy, iy vuus ip)
and

{7:1, 7:2, LICIC ] ip} n {jl’ jza vy jq} =@,
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using the following recurrence relation:

phite- by o platseedpa | pladyeeip
Jyd,eee dq Jyd, e dq Jydy oee Jqp
with
1
rroo = (f - f ) - -
Jydy e dg Ajindy Ay gt 2 Al_ihiz...jq fAlmz.“jq"'Z),
where the f's are the generator polynomials as given in Definition 2.
It may be noted that if {J;, Jos +..» jq} = ¢, then the polynomial is rep-
resented simply as F*i1*2-'-*p, i.e., without a subscript. Moreover, the super-—
script set {71, T35 «-e» ip} can never be empty.

Example: Let 4 = 22. Hence I = {1, 2}, 4, =26, 4, = 38, 4, = 42,

(Fa = Fax2d = Gy = Fava) = Fop = o) = (P = [ae)

(Fag = Fyo) = (Fyy = Fu)

F12=F'=F) = (f3, = F21,) = (Fag = F2u) = [(Fye = Fuo) = Fup = Fuu)]-

Fl

]

1
F2

In particular, the polynomials of the form F*i*2''-*p will play an important
role in proving the conjecture, as we shall see later on. The recursive compu-
tation of such polynomials can be visualized easily with the help of a binary
tree. Consider, for example, the computation of F!23, which is represented by
the binary tree as shown in Figure 1. The leaf nodes represent the generator
polynomials corresponding to different rows of the Pascal matrix and each of the
non-leaf nodes represents the arithmetic subtraction operation. Some of the
non-leaf nodes are labelled, e.g., Fl, Fy, Flz, etc. The inorder traversal
[6] of the subtree rooted at any labelled non-leaf node computes the polynomial
denoted by that label.

Let [a:, B:] be a closed interval of integers given by

t. t+1
ap=24+2247, B,=1+ 2 47, t20. (3)
J=0 Ji=0
Theorem 2: In a Pascal matrix of order »n, where n lies within the closed in-

terval [0+, B.], as defined in (3), the 2°T! rows denoted by the expansion set

S(4) and the 2-distant co-expansion set T,(4) of the integer 4 as given in (1)
are linearly dependent, i.e., the determinant of PM, for such values of = will
be zero.

Proof:

Case 1. ¢t =0

In this case, Oy =4, By =6, and 4 = 2. So S(4)
Since the order n of the Pascal matrix is limited by B

{2} and T,(4) = {4}.

6, we write

1]

fo=1+2%(1 +x?) and f, = (1 +z%) +x*.
So
f, -7, =0.
Case 2. t =1
To prove the linear dependence among the different rows of PM,, it is suf-

ficient to show that any of the polynomials of the form F;gY"';P will be zero.
1o d
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F123

ol ol ofF e

Fo Fasz Fay Tay+2 Ta, fA2+z fA” fA”+2 Ta, fA3+2 Tays Farsv2 fA23 fA23+z Ar23 fA123+2

Figure 1

Since the order n of PM, is limited by B., we write

FA— (1 +xa1)(l +xa2) e (1 +xat)

Ja
+ A1 + 22) (1 + %) (1 + %) +++ (1 + 2%)
and ,
fA+2 = (1 +x2)(1 +.’L‘a1> cee (1 +-’L‘at) +xx4+2(1 +xa1’) e (1 +(X,'at).
Hence,
fA _fA+2 = —-712(1 + 2%) (1 + x%) -+ (1 +.’X,‘at)
+ 2A(L + ) e (1 + x9).
Similarly,
- = -2 ay a a
fa, = Taye2 (1 + ™) (1 + x2) (}+xt) ,
+ 2% (1 + 2% (1 + x%) ++ (1 + 2%).
Hence,
Fl=—x2x%(1 - x%) (1 + xaz) cer (1 4 2%)
+ 2A(1 - 2%0) (1 + 2%2) +-- (1 + 2%).
Also,
1_
F2 = (fAz - fA2+2) - (fAlz - fA12+2)
= —x22% (1 = 29)(1 + 2%)(1 + 2%) ++0 (1 + 2%)
+ xAZ(l - 2% (1 + %) (1 + xaé) cee (14 xa;)
and

Fl2 = pl_ F;
~e2r P2 (1 - 2®) (1 - 2%)(1 + a%) -+ (1 + x%)
+ Al - 2T (L - %) (L + 29) -+ (1 + 2%).
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Continuing the process, we get

plas..t _ _x2+a1+a2+"'+at(1 - x%) (1 - %) . (1 - x %)

+ oAl - %) (1 - x%) -+« (1 - x%) =0. Q.E.D.

Let [y,, §;] be a closed interval of integers given by

t
Yy =4+ 4247, 8, =234, t2o0. )
J=0 Jjg=0

Theorem 3: In a Pascal matrix of order »n, where »n lies within the closed in-
terval [v,, 8:], as defined in (4), the 2!*! rows denoted by the expansion set
S(4) and the 6-distant co-expansion set T (4) of the integer 4 as given in (2)
are linearly dependent, i.e., the determinant of PM, for such values of n will
be zero.

Proof: The proof is similar to that of Theorem 2 and is omitted here.

Remarks: (1) v, =8, + 2 and a,,; = §; + 2.

(2) For all t, t = 0, [0y, B, and [y4s 84] give two series of inter-
vals of orders of Pascal matrices having zero determinants.

(3) In a Pascal matrix PM,, where n = By + 1 or §; + 1, £ = 0, the
approach used in the proof of Theorem 2 fails to discover a set of linearly
dependent rows. This can be seen as follows:

If n=f, + 1, then we must consider terms up to xB% in the generator poly-
nomials of the rows of PM,. Since By =4 + 4**l1 =4+ a,,,, t 20, only the
polynomial f, will have an added term (1 + x%+1) in its hy-part; all other
polynomials, e.g., fyi0» fhl, fa,+25 +++, €tc., as given in the proof of Theo-
rem 2, will remain unaltered. Hence, F123---% 411 not be zero. The case for
n=238 + 1 can be similarly verified.
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