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1. INTRODUCTION 

In a recent paper Deo and Quinn [1], in their search for a class of graphs 
to be used as computer networks, introduced Pascal graphs that are constructed 
using Pascalfs triangle modulo 2 [3]. They derived.. a number of useful results 
for Pascal graphs and Pascal matrices and, in the conclusion, they made certain 
interesting conjectures. The objective of the present note is to find an exact 
expression for the number of edges in Pascal graphs of different orders and to 
settle one of the conjectures made in [1], 

We have used standard graph theoretic terms [4], [5] in this paper, and the 
reader is assumed to be familiar with [1], 

2. BASIC CONCEPTS 

Definition 1: A Pascal matrix PMn of order n is defined to be an n x n sym-
metric binary matrix where the main diagonal entries are all 0fs and the lower 
triangular part of the matrix consists of the first (n - 1) rows of Pascalvs 
triangle modulo 2. PMn(i, j) denotes the (£, j)t h element of PMn. A Pascal 
graph PGn having n vertices is a graph corresponding to the adjacency matrix 
PMn-

Remark: This definition of a Pascal matrix is the same as in [1] in contrast 
to that in [2]. 

Definition 2: The generator polynomial of the 777 th row, m ^ 1, of a Pascal ma-
trix PMn of any fixed order n > m is defined to be a polynomial fm(x\ with 
binary coefficients such that PMn(m, j) is given by the coefficient of x3'1 in 
fm(x)9 1 < j < n. 

Since PMn(m, m) = 0 by definition, we can write, for a Pascal matrix PMn, 
n > ms 

fmw = 
g (x) + xmhm(x), for n > m 

g(x)9 for w = 777, 

where gm(x) and hm(x) are the generator polynomials of the lower and the upper 
triangular parts, respectively, of the 777th row in PMn. By definition, gm(x) 
applies only for m ^ 2. 

Definition 3> The 5-sequence of a positive integer n is defined as the strict-
ly decreasing sequence Bin) = (pl9 p2s • » . » pT ) of Ln nonnegative integers 
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such that 

n = £ 2^, 
J = I 

where £ n is the length of the sequence. 

Remarks: (1) The 5-sequence of any positive integer n gives the positions of 
l's in the binary representation of n in decreasing order. 

(2) The S-sequence of zero is defined to be a null sequence. 

Lemma 1: For any Pascal matrix PMn with n > m, 

(a) For m > 2, g (x) = fl (1 + x ^ ' ) . 
jeB(m-2) 

(b) For m > 1, /zm(a;) = 0 (1 + * 2 < 7 ' ) . 

dtB{m- 1) 

Proof: 

(a) From the definitions of a Pascal matrix and gm(x), it is apparent that 
gm(x) = (1 + J;)OT~2, with the coefficients computed in the modulo 2 field, from 
which the proof follows. 

(b) Since PMn is symmetric, hm(x) will contain x^ as a nonzero term iff 
gm+j<+l(x) contains x"1"1 as a nonzero term, ft > 0. This is possible if and only 
if B(m+k- 1) contains S(m - 1) as a subsequence, i.e., when there is no ele-
ment common to both B(k) and B(m - 1). Hence the claim. 

Example: In a Pascal matrix of order n = 30, 

f13(x) == (1 + ar)(l + ^2)(1 + *8) + x13(l + x)(l + x2)(l + x1B)9 

f20(x) = (1 + x2)(l + x16)+*20(l + ̂ )(1 + x8). 

Remark: For any m9 m > 2, (1 + re) is a factor of gm{x) iff (1 + re) is also a 
factor of hm(x), since B(n) s n > 0, can contain 0 only when n is odd. 

Definition 4: The wth row of PMn will be called the pth instance of all l's in 
the lower triangle if m = 2P + 1, p ^ 1. 

3. NUMBER OF EDGES IN PASCAL GRAPHS 

Let e(n) denote the number of edges in PGn. Deo and Quinn [1] showed that 

e(n) < [(n - l)log23J. 

In this section we find an exact expression for e(n). 

Lemma 2: In a Pascal graph PGn, where 

n = (2P + 1) + i , 

for some nonnegative integer p and 1 < £ < 2P, the degree d(n) of the nth ver-
tex in PGn is given by 
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din) = 2d(i + 1), 

where d(i + 1) denotes the degree of the (i + l)st vertex in PGi + 1-

Proof: In PMni the n t h row has only its lower triangular part and so does the 
(i + l)throw in PMi + 1. Hence, in PMn9 

fnW = 9nW = C1 + ^ ) n " 2 = (1 + ^ ) 2 ? * C1 + «) i " 1 -

Since the coefficients of the polynomials are computed in a modulo 2 field, we 
get 

9n(x) = (1 + x2P) • ̂  + 1(*). 

Therefore, since i K 2P
9 the number of nonzero terms in gn(x) is twice that in 

gi+1(x). Hence d(n) = 2d(i + 1). Q.E.D. 

If the nth row of PMn corresponds to the pth instance (p ̂  1) of all l's in 
its lower triangular part, i.e., if n = 2P + 1, then we also denote the number 
of edges in PGn by E{p), i.e., E(p) = e(2p + 1). 

Lemma 3: E(p) = 3P. 

Proof: #(p) = Number of edges in PG of order (2P~1 + 1) 
+ Number of edges added due to addition of extra 2P vertices 

= E(p - 1) + 2E(p - 1) [by Lemma 2] 

= 3E(p - 1) 

= 32E(p - 2) = ••• = 3P'1S,(1). 

Now Z?(l) corresponds to the number of edges in PG3, which is 3. Hence, we get 

E(p) = 3P. Q.E.D. 

Theorem 1: The number of edges in PGn (n > 1) is given by 

Ln-1 

e(n) = £ 2 J _ 1 »3Pj' , 
J' = I 

where (p x , p 2 , . . . , pL ) i s the 5-sequence B(n - 1) of length I>n_1. 

Proof: Let n - l = n 1 + n 2 + » - - + nk, where fc = Ln_ls ni = 2 S 1 < £ < k. 
Hence the (n1 + l ) t h row of PMn corresponds to the p]_th instance of a l l l ' s in 
the lower t r i ang le , and so by Lemmas 2 and 3, 

e(n) = Eipj) + extra edges due to addition of ver t ices Vn + 2 5 • • • » Vn 

to PGnl+i 

= 3 P l + 2e(n2 + n3 + • • • + nfc + 1) = 3 P l + 2e(w')» 

where n ' = (1 + n2) + n3 + • • • + nk« Repeating the process, we get 

e(n) = 3 P l + 2(3 ? 2 + 2e(nn)) [where n" = n3 + n^ + •• • + nk + 1] 

= E 2 J _ 1 ° 3^' . Q.E.D. 
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k^ DETERMINANTS OF PASCAL MATRICES 

We now settle one of the conjectures made in [1] regarding the values of n 
for which the determinant of PMn will be zero. 

Let us consider an integer A which is either 2 or can be expressed as 

A = 2 + (a± + a2 + • • • + ak), 

where a1 = 4 or 8, and ai + 1 = 4a^ 9 1 < i < k. 
We now define the index set I of A as follows: 

<p9 for A = 2 

{l, 2, ..., &}, otherwise 

Let the cardinality of I be denoted by t . It can be verified that for A > 2, 
we can write 

t 
4 = 1 + £ 4J, for ax = 4 (1) 

and 
t 

4 = 2 £ 4 J
5 for a, = 8. (2) 

Both (1) and (2) also apply for A = 2, i.e., for t = 0 as well. Let a£ = 2a^5 
for 1 < i < &. We use an arbitrary subset J'= {j15 j 2 , ..., jp} of I to denote 
different integers generated from A as follows: 

AJlJ2...Jp = 2 + E «; + . E a,. 
1 2 p {£!' i e l - l ' 

When {jl5 j 2 , . .., jp] = <p, Ajj j = A itself. 

Let P(I) be the power set of X. We define the expansion set S(A) of A as 

s(A) ={^jV2...JpKiiS J2, .... dp} eP(J)}. 
Example: For ,4 = 2, £(4) = {2}. 

For A = 22, ax = 4 , a2 = 16, a^ = 8, a2' = 32, 

A1 = 2 + a{ + a2 = 26, 

A2 = 2 + a-L + a2f = 38, 

A12 = 2 + a{ + a[ = 42, 

and S(A) = {22, 26, 38, 42}. 

The r-distant co-expansion set Tr(A) of A is defined as 

We construct a set of polynomials of the form F-1.2 ,p, where 
1"2 ' ' ' Jq 

1^2' ^2 ' "••5 'Z'p / Q-^5 L J j 5 J25 »»•, Ĵ rJ C X , 1 ^ { t p ^ 2 S »..» ^pJ 

and 
{-£ia i 2 , . . . , ip} n { j l S j 2 , . . . , j } = <?9 
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using the following recurrence relation: 

J 1 J 2 • • • 3q J±j2 ... Qq J-J 2 ' ' ' Jqip 
with 

where the /'s are the generator polynomials as given in Definition 2. 
It may be noted that if {jl5 j 2 , . .., jq] = <p3 then the polynomial is rep-

resented simply as F'Li'L2 • •• H , i.e., without a subscript. Moreover, the super-
script set {iij ̂ 2s ...s ip} can never be empty. 

Example: Let A = 22. Hence I = {1, 2}5 A1 = 26, 4 2 = 389 4 1 2 = 42, 

^ = (?A fA+2^ ~ (/i41 " ^ + 2 ^ = ^22 ~ flO "~ ^26 ~ A 8 ^ 

2 ~ ^38 ~ A ( r ~ ^ 4 2 ~ A 4 ' 

F 1 2 = F 1 - F } . ( / 2 2 - / z i t ) _ ( / 2 6 _ / 2 e ) - [ ( / 3 8 - A 0 ) - ( / , 2 - / „ , ) ] . 

In particular 5 the polynomials of the form Fz^z"° ZP will play an important 
role in proving the conjecture, as we shall see later on. The recursive compu-
tation of such polynomials can be visualized easily with the help of a binary 
tree. Consider, for example, the computation of F123, which is represented by 
the binary tree as shown in Figure 1. The leaf nodes represent the generator 
polynomials corresponding to different rows of the Pascal matrix and each of the 
non-leaf nodes represents the arithmetic subtraction operation. Some of the 
non-leaf nodes are labelled, e.g., F1, F\, F12, etc. The inorder traversal 
[6] of the subtree rooted at any labelled non-leaf node computes the polynomial 
denoted by that label. 

Let [at, £>t] be a closed interval of integers given by 

t t+ 1 
at = 2 + 2 E 4 J , Bt - 1 + E 4J, t > 0. (3) 

j = 0 j = 0 

Theorem 2: In a Pascal matrix of order n, where n lies within the closed in-
terval [at, 3t], as defined in (3), the 2t+l rows denoted by the expansion set 
S(A) and the 2-distant co-expansion set TZ(A) of the integer A as given in (1) 
are linearly dependent, i.e., the determinant of PMn for such values of n will 
be zero. 

Proof: 

Case 1. t = 0 

In this case, a0 = 4, 3o = 6, and A = 2. So S(A) = {2} and T2(A) = {4}. 
Since the order n of the Pascal matrix is limited by Bo = 6, we write 

f2 = 1 + x2(l + x2) and fh = (1 + x2) + xh . 
So 

f2 - A - °° 
Case g. t > 1 

To prove the linear dependence among the different rows of PMn9 it is suf-

ficient to show that any of the polynomials of the form F.1.2'" .p will be zero. 
J 1J 2 ' ' " 3 n 
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C-)Fi 

fA fA+2 fAl fAl + 2 fAz ?A2 + 2 fAl2
 fA12 + 2 fAi fA3 + 2 fA„ ^ i s + 2 f A „ . ^ 2 S + 2 ?A123 ^ 1 2 S + 2 

Figure 1 

Since the order n of PMn is limited by 3^, we write 

fA = (1 + xai)(l + a?a2) ... (1 + a**) 

+ 2^(1 + x2)(i + xah(i + xah "- (i + xah 
and 

/ ^ + 2 = (1 + x2)(l + xai) • . . (1 + xa*) + xA+2(l + xal) ••• 
Hence, 

^ " ^ + 2 = ~X2(1 + ^ a i ) ( 1 + ^ ' " ( 1 + * " * > 
+ ^ ( 1 + Xal) '" (1 + tfa*). 

S i m i l a r l y , 
f - fA + 2 = -x2(l + xahd +xa*) • •• (1 + a?aO 

+ xAi(l + # " 0 ( 1 + ^ 2 ' ) ••" (1 + xah • 

(1 + a;**)-

Hence, 

A l s o , 

and 
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F 1 = -x2xai(l - xa±)(l + xa*) • • • (1 + a;a*) 
+ #4(1 _ ^ i ) ( i + ara2) . . . (1 + x

al). 

F2 = ^ 2 fA2 + 2^ " ^ 1 2 " ^ 4 1 2 + 2 ^ 

= -^2^ai(i - ^ao(i + xaha + ^ao • •• (i + xa*) 
+ # ^ ( 1 - x a O ( l + xa*)(l + a;a3) . . . ( l + xah 

F12 = F1- F' 

= - ^ 2 x a i ^ a 2 ( l - xa*)(l - x a 2 ) ( i + ^ra3) . . . ( i + #«*) 

+ xA(l - xai)(l - xa*)(l + xah • • • (1 + ^ a * ) . 

[Aug. 



A FURTHER NOTE ON PASCAL GRAPHS 

Continuing the process, we get 

F123...t = _x2+ai + a 2 + . . . + a t ( 1 _ x a l ) ( 1 _ ^ 2 ) _ ( 1 _ ^ a t ) 

+ xA(l - xai)(l - xa2) ... (1 - x
a*) = 0. Q.E.D. 

Let [yt9 5̂ -] be a closed interval of integers given by 

t t+i . 
yt = 4 + 4 E 4 J

9 6t = 2 £ 4 J , t > 0. (4) 
j = 0 j = 0 

Theorem 3"- In a Pascal matrix of order n5 where n lies within the closed in-
terval [yt, S^], as defined in (4)s the 2t+l rows denoted by the expansion set 
S(A) and the 6-distant co-expansion set T6(A) of the integer A as given in (2) 
are linearly dependents i.e., the determinant of PMn for such values of n will 
be zero. 

Proof: The proof is similar to that of Theorem 2 and is omitted here. 

Remarks: (1) yt = (3t + 2 and a t + 1 = St + 2. 

(2) For all t, t ^ 0, [a^, 3 t] 5 and[yt, 6fJ give two series of inter-
vals of orders of Pascal matrices having zero determinants. 

(3) In a Pascal matrix PMn, where n=$t+lor&t+l, £ > 0, the 
approach used in the proof of Theorem 2 fails to discover a set of linearly 
dependent rows. This can be seen as follows: 

If n = 3 ^ + 1» then we must consider terms up to x&t in the generator poly-
nomials of the rows of PMn. Since 3t = A + 4 t + 1 = A + at+ 15 t > 0, only the 
polynomial fA will have an added term (1 + x^*1) in its /^-part; all other 
polynomials, e.g., fA+2> fA » /^2+2' •••» etc., as given in the proof of Theo-
rem 2, will remain unaltered. Hence, F12^--^ will not be zero. The case for 
n = <5 + 1 can be similarly verified. 

ACKNOWLEDGMENTS 

The authors are grateful to the referee for his constructive criticism and 
valuable comments. 

REFERENCES 

1. N. Deo & M. J. Quinn. "Pascal Graphs and Their Properties." The Fibonacci 
Quarterly 21, no. 3 (1983):203-214. 

2. W. F. Lunon. "The Pascal Matrix." The Fibonacci Quarterly 15, no. 3 (1977): 
201-204. 

3. C. T. Long. "Pascal's Triangle Modulo p." The Fibonacci Quarterly 19, no. 
5 (1981):458-463. 

4. F. Harary. Graph Theory. Reading, Mass.: Addison Wesley, 1969. 
5. W. Deo. Graph Theory with Applications to Engineering and Computer Sci-

ence. Englewood Cliffs, W.J.: Prentice-Hall, 1974. 
6. D. E. Knuth. The Art of Computer Programming, Vol. I, 2nd ed. Reading, 

Mass.: Addison Wesley, 1977. 

1986] 257 


