ON A SECOND NEW GENERALIZATION OF THE FIBONACCI SEQUENCE

KRASSIMIR T. ATANASSOV

CLANP-BAN, 72 Lenin Boul., 1784 Sofia, Bulgaria (Submitted January 1985)

A new perspective to the generalization of the Fibonacci sequence was introduced in [1]. Here, we take another step in the same direction. In [1] we studied the sequences $\{\alpha_i\}_{i=0}^\infty$ and $\{\beta_i\}_{i=0}^\infty$ defined by

$$\begin{cases} \alpha_{0} = \alpha, \ \beta_{0} = b, \ \alpha_{1} = c, \ \beta_{1} = d, \\ \alpha_{n+2} = \beta_{n+1} + \beta_{n}, & (n \ge 0) \\ \beta_{n+2} = \alpha_{n+1} + \alpha_{n}, & (1) \end{cases}$$

where a, b, c, and d are fixed real numbers. We also utilized the generalization $\{F_i(a,b)\}_{i=0}^{\infty}$, where

$$\begin{cases} F_0(a, b) = a \\ F_1(a, b) = b \\ F_{n+2}(a, b) = F_{n+1}(a, b) + F(a, b) \end{cases}$$
 $(n \ge 0)$

so that F_n = F_n (0, 1), where $\{F_i\}_{i=0}^{\infty}$ is the Fibonacci sequence. We shall study here the properties of the sequences for the scheme,

$$\begin{cases} \alpha_{0} = \alpha, \ \beta_{0} = b, \ \alpha_{1} = c, \ \beta_{1} = d, \\ \alpha_{n+2} = \alpha_{n+1} + \beta_{n}, \\ \beta_{n+2} = \beta_{n+1} + \alpha_{n}, \end{cases}$$
 $(n \ge 0)$ (2)

where α , b, c, and d are fixed real numbers, and will conclude with a theorem, similar to [1]. Since the proofs of the results in this paper are similar to those in [1], we shall only list the results and eliminate the proofs.

Obviously when $\alpha=b$ and c=d, the schemes from (2), as well as from (1), coincide with the Fibonacci sequence $\{F_i(\alpha,b)\}_{i=0}^{\infty}$. The first few terms of the sequences from (2) are:

n	α_n	βn
0	α	Ъ
1	c	d
2	b + c	a + d
3	b + c + d	a + c + d
4	a + b + c + 2d	a + b + 2c + d
5	2a + b + 2c + 3d	a + 2b + 3c + 2d
6	3a + 2b + 4c + 4d	2a + 3b + 4c + 4d
7	4a + 4b + 7c + 6d	4a + 4b + 6c + 7d
8	6a + 7b + 11c + 10d	7a + 6b + 10c + 11d
9	10a + 11b + 17c + 17d	11a + 10b + 17c + 17d

Lemma 1: For every $k \ge 0$:

(a)
$$\alpha_{6k} + \beta_0 = \beta_{6k} + \alpha_0$$
;

ON A SECOND NEW GENERALIZATION OF THE FIBONACCI SEQUENCE

(b)
$$\alpha_{6k+1} + \beta_1 = \beta_{6k+1} + \alpha_1$$
;

(c)
$$\alpha_{6k+2} + \alpha_0 + \beta_1 = \beta_{6k+2} + \beta_0 + \alpha_1$$
;

(d)
$$\alpha_{6k+3} + \alpha_0 = \beta_{6k+3} + \beta_0$$
;

(e)
$$\alpha_{6k+4} + \alpha_1 = \beta_{6k+4} + \beta_1$$
;

(f)
$$\alpha_{6k+5} + \beta_0 + \alpha_1 = \beta_{6k+5} + \alpha_0 + \beta_1$$
.

Lemma 2: For every $n \ge 0$:

(a)
$$\alpha_{n+2} = \sum_{i=0}^{n} \beta_i + \alpha_1;$$
 (b) $\beta_{n+2} = \sum_{i=0}^{n} \alpha_i + \beta_1.$

Lemma 3: For every $n \ge 0$:

(a)
$$\sum_{i=0}^{6k} (\alpha_i - \beta_i) = \alpha_0 - \beta_0;$$

(b)
$$\sum_{i=0}^{6k+1} (\alpha_i - \beta_i) = \alpha_0 - \beta_0 + \alpha_1 - \beta_1;$$

(c)
$$\sum_{i=0}^{6k+2} (\alpha_i - \beta_i) = 2\alpha_1 - 2\beta_1;$$

(d)
$$\sum_{i=0}^{6k+3} (\alpha_i - \beta_i) = -\alpha_0 + \beta_0 + 2\alpha_1 - 2\beta_1;$$

(e)
$$\sum_{i=0}^{6k+4} (\alpha_i - \beta_i) = -\alpha_0 + \beta_0 + \alpha_1 - \beta_1;$$

(f)
$$\sum_{i=0}^{6k+5} (\alpha_i - \beta_i) = 0.$$

Lemma 4: For every $n \ge 0$:

$$\alpha_{n+2} + \beta_{n+2} = F_{n+1} \cdot (\alpha_0 + \beta_0) + F_{n+2} \cdot (\alpha_1 + \beta_1).$$

As in [1], we express the members of the sequences $\{\alpha_i\}_{i=0}^{\infty}$ and $\{\beta_i\}_{i=0}^{\infty}$ when

$$\begin{cases} \alpha_n = \gamma_n^1 \cdot \alpha + \gamma_n^2 \cdot b + \gamma_n^3 \cdot c + \gamma_n^4 \cdot d \\ \beta_n = \delta_n^1 \cdot \alpha + \delta_n^2 \cdot b + \delta_n^3 \cdot c + \delta_n^4 \cdot d \end{cases}$$

It is interesting to note that Lemmas 5-7 have results identical to those found in [1] for the sequences $\{\gamma_n^1\}_{n=0}^{\infty}$, $\{\gamma_n^2\}_{n=0}^{\infty}$, etc., even though they are different sequences.

Lemma 5: For every $n \ge 0$:

(a)
$$\gamma_n^1 + \delta_n^1 = F_{n-1};$$

(c)
$$\gamma_n^3 + \delta_n^3 = F_n;$$

(d) $\gamma_n^4 + \delta_n^4 = F_n.$

(b)
$$\gamma_n^2 + \delta_n^2 = F_{n-1}$$
;

(d)
$$\gamma^{4} + \delta^{4}_{12} = F_{12}$$

Lemma 6: For every $n \ge 0$

(a)
$$\gamma_n^1 + \gamma_n^2 = \delta_n^1 + \delta_n^2$$
; (b) $\gamma_n^3 + \gamma_n^4 = \delta_n^3 + \delta_n^4$.

Lemma 7: For every $n \ge 0$:

(a)
$$\delta_n^1 = \gamma_n^2$$
; (e) $\gamma_n^3 = \gamma_{n+1}^2$

(b)
$$\delta_n^2 = \gamma_n^1$$
; (f) $\gamma_n^4 = \gamma_{n+1}^1$

(d)
$$\delta_n^4 = \gamma_n^3$$
; (h) $\delta_n^4 = \delta_{n+1}^1$

Let ψ be the integer function defined for every $k \ge 0$ by:

$$\begin{array}{c|cccc}
\tau & \psi(6k + \tau) \\
0 & 1 \\
1 & 0 \\
2 & -1 \\
3 & -1 \\
4 & 0 \\
5 & 1
\end{array}$$

Obviously, for every $n \ge 0$,

$$\psi(n+3) = -\psi(n). \tag{3}$$

Using the definition of the function ψ , the following are easily proved by induction.

Lemma 8: For every $n \ge 0$:

(a)
$$\gamma_n^1 = \delta_n^1 + \psi(n);$$
 (c) $\gamma_n^3 = \delta_n^3 + \psi(n+4);$ (b) $\gamma_n^2 = \delta_n^2 + \psi(n+3);$ (d) $\gamma_n^4 = \delta_n^4 + \psi(n+1)$

(a)
$$\gamma_n^2 = \delta_n^2 + \psi(n);$$
 (c) $\gamma_n^2 = \delta_n^2 + \psi(n+4);$ (b) $\gamma_n^2 = \delta_n^2 + \psi(n+3);$ (d) $\gamma_n^4 = \delta_n^4 + \psi(n+1)$

Lemma 9: For every $n \ge 0$:

(a)
$$\gamma_{n+2}^1 = \gamma_{n+1}^1 + \gamma_n^1 + \psi(n+3);$$
 (d) $\gamma_{n+2}^3 = \gamma_{n+1}^3 + \gamma_n^3 + \psi(n+1);$ (e) $\gamma_{n+2}^2 = \gamma_{n+1}^2 + \gamma_n^2 + \psi(n);$ (f) $\gamma_n^3 = \gamma_n^4 + \psi(n+4).$

b)
$$\gamma_{n+2}^2 = \gamma_{n+1}^2 + \gamma_n^2 + \psi(n);$$
 (e) $\gamma_{n+2}^4 = \gamma_{n+1}^4 + \gamma_n^4 + \psi(n+4);$

(c)
$$\gamma_n^1 = \gamma_n^2 + \psi(n)$$
; (f) $\gamma_n^3 = \gamma_n^4 + \psi(n+4)$.

From Lemmas 5, 7, 8, and (3), we obtain the equations:

$$\begin{split} \gamma_n^1 &= \delta_n^2 = \frac{1}{2} (F_{n-2} + \psi(n)); \\ \gamma_n^2 &= \delta_n^1 = \frac{1}{2} (F_{n-1} + \psi(n+3)); \\ \gamma_n^3 &= \delta_n^4 = \frac{1}{2} (F_n + \psi(n+4)); \\ \gamma_n^4 &= \delta_n^3 = \frac{1}{2} (F_n + \psi(n+1)). \end{split}$$

Theorem: For every $n \ge 0$:

$$\alpha_n = \frac{1}{2} \{ (F_{n-1} + \psi(n)) \alpha + (F_{n-1} + \psi(n+3)) b + (F_n + \psi(n+4)) c + (F_n + \psi(n+1)) d \}$$

ON A SECOND NEW GENERALIZATION OF THE FIBONACCI SEQUENCE

$$= \frac{1}{2} \{ (\alpha + b)F_{n-1} + (c + d)F_n + \psi(n)\alpha + \psi(n + 3)b + \psi(n + 4)c + \psi(n + 1)d \}.$$

$$\beta = \frac{1}{2} \{ (F_{n-1} + \psi(n + 3))\alpha + (F_{n-1} + \psi(n))b + (F_n + \psi(n + 1))c + (F_n + \psi(n + 4))d \}$$

$$= \frac{1}{2} \{ (\alpha + b)F_{n-1} + (c + d)F_n + \psi(n + 3)\alpha + \psi(n)b + \psi(n + 1)c + \psi(n + 4)d \}.$$

On the basis of what has been done in [1] and in this paper, one could be led to generalize and examine sequences of the following types

$$\begin{cases} \alpha_0 = \alpha, \ \beta_0 = b, \ \alpha_1 = c, \ \beta_1 = d, \\ \alpha_{n+2} = p \cdot \beta_{n+1} + q \cdot \beta_n, \\ \beta_{n+2} = t \cdot \alpha_{n+1} + s \cdot \alpha_n, \end{cases}$$
 $(n \ge 0)$

$$\begin{cases} \alpha_0 = \alpha, \; \beta_0 = b, \; \alpha_1 = c, \; \beta_1 = d, \\ \alpha_{n+2} = p \cdot \alpha_{n+1} + q \cdot \beta_n, \\ \beta_{n+2} = t \cdot \beta_{n+1} + s \cdot \alpha_n, \end{cases} \qquad (n \ge 0)$$

for the fixed real numbers p, q, t, and s.

ACKNOWLEDGMENT

The author is deeply thankful to the referee for his thorough discussion.

REFERENCE

K. Atanassov, L. Atanassova, & D. Sasselov. "A New Perspective to the Generalization of the Fibonacci Sequence." The Fibonacci Quarterly 23, no. 1 (1985):21-28.
