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INTRODUCTION 

A square array of consecutive integers 1, 2, ..., n2 is called magic of or-
der n if the rows, columns, and diagonals all add up to the same number. If in 
addition9 the sum of the numbers in each broken diagonal is also the same num-
ber, then the magic square is said to be pandiagonal. Let M be a magic square 
of order n and let its entries by denoted by (i9 j), (1 < i9 j < n). Then M is 
symmetrical if (i9 j) + (n - i + 1, n - j + 1) = n2 + 1. Let Dh denote the 
dihedral group of order 8. Then, two magic squares M and Mf are said to be 
equivalent if there is a a in Dk such that o(M) = Mf. 

Let 

oQ(n) = number of inequivalent magic squares of order n* 

&o(n) = number of inequivalent pandiagonal magic squares of order n. 

Po(n) = number of inequivalent symmetrical magic squares of order n. 

Y0(n) = number of inequivalent pandiagonal and symmetrical magic 
squares of order n. 

While it is not difficult to constructs for any n ^ 3* a magic square of 
order ns it seems formidable to determine Q0(n) or 60(n) for n ^ 6 (see [1] and 
[2]). In [4], it is shown that 60(4) = 48 and in [5] that <50(5) = 3600. In 
this note, we shall show that, given an odd-order pandiagonal magic square, we 
can use it to generate a finite iterative sequence of pandiagonal magic squares 
of the same order. We show that the number of terms in this sequence is always 
even. It is observed that, if we start with a non-pandiagonal magic square of 
odd order, then magic squares and non-magic squares occur alternatively in the 
sequence. It is also observed that if the initial square is symmetrical, then 
so is the next one. We then determine the number of terms in the above itera-
tive sequences, thereby showing that each of G0(n), pQ(n)9 SQ(n)s and y0(n) is 
a multiple of the number of terms in its respective sequence. Finally, we note 
that our results may be combined with others to yield stronger results. 

RESULTS 

Let M be a pand iagona l magic squa re of o rde r n . Obtain from M a square 
<P(M) whose e n t r i e s <P(i9 j) , (1 < i , j < n ) , a r e g iven by 

<P(is j ) = (m+l + i - j , m + i+j)9 

where m - (n - l)/2 and the operations are taken modulo n. Then it is routine 
to verify that <p(M) is magic and pandiagonal (see [3]). Further, if M Is sym-
metrical, then so is <P(M) . For r > 1, define, inductively, 

<PV(M) = ^(^r"1(A0). 

328 [Nov, 



A NOTE CONCERNING THE NUMBER OF ODD-ORDER MAGIC SQUARES 

Thus, we obtain a sequence M, <P(M), ..., of pandiagonal magic squares of order 
n. Note that <P is one-to-one and onto and hence its inverse exists. Lemma 1, 
below, asserts that the sequences generated by M and oM under <p are equivalent. 
Further, there exists v such that o<Pr(M) = M for some O e D^. We wish to de-
termine the smallest such i3. 

Lemma 1: Let o e D^. Then <P(o(M)) = TT<P(M) for some TT e D . 

Proof: If a is a 90°  clockwise rotation, then o(is j) = (j, n - •£ + 1)* It is 
routine to verify that (pok(i3 j) = ok<p(is j) , where /< = 0, 1, 2, 3. If a is 
the reflection along the central vertical (horizontal), then a(i, j) = (£, n -
j + 1) [respectively, (n - i + 1, j) ]. Choose 7T to be the diagonal reflection 
with TT(i, j) = (j, i) [respectively, (n - j + 1, n - i + 1)], If a is a diag-
onal reflection, then o(is j) = (j, i) or a(ts j) = (n - j + 1, n - i + 1), in 
which case let TT be the reflection along the central horizontal and central 
vertical, respectively. This completes the proof. 

Let the entries of <P'r(M) by denoted by <Pr(is j) . Then it is easy to verify 
that (pr(i, j) is given by the following: 

I f r ~ 2 s , s > 1 , t h e n 

f (TT? + 1 + 2 s " 1 - 2 s j , m 4- 1 - 2 s " 1 + 2si) 

<Pr(i, j ) 
(777 + 1 + 2S 

(777 + 1 

(77? + 1 

- 2 s i , 777 + 1 + 2 s " 1 - 2H) 

+ 2 s j , 77? + 1 + 2 s " 1 - 2si) 

+ 2 s i , m + 1 + 2 s j ) 

s E 1 (mod 4 ) , 

s = 2 (mod 4 ) , 

s. E 3 (mod 4 ) , 

s E 0 (mod 4 ) . 

^ ( i , J) 

s = 1 (mod 4 ) s 

s = 2 (mod 4 ) , 

s E 3 (mod 4 ) , 

s E 0 (mod 4 ) . 

I f r = 2 s + 1 , s > 0 , t h e n 

"(777 + 1 + 2 s - 2 s ( i + j ) , 777 + 1 + 28(i - j ) ) 

(777 + 1 - 2S(i - j ) , 777 + 1 + 2S - 2 S ( i + j ) ) 

(777 + 1 - 2S + 2 S ( ? ; + j ) , 777 + 1 - 2S (i - J*)) 

(TT? + 1 + 2 s ( i - j ) , 7?? + 1 - 2s + 2s(i + j ) ) 

The proof of the following lemma is straightforward and so is omitted. 

Lemma 2: Suppose n is odd and n - 2m + 1. 

( I ) I f 2s E 1 (mod n ) , t h e n 7?7 + 1 - 2 s " 1 = 0 (mod ri) 
a n d 7?? + 1 + 2 6 " 1 E 1 (mod ri). 

( i f ) I f 2 s E - 1 (mod n ) , t h e n TT? + 1 - 2 s " 1 E 1 (mod ri) 
and 77? + 1 + 2 s " 1 E 0 (mod ri). 

Proposition 1: Let n be odd. Then 60(w) E 0 (mod 2) and Y0(ft) = 0 (mod 2). 

Proof: If v is odd, then (1, 1) will be an entry in the central column or cen-
tral row of <Pr(M) . This means that there is no G in Dk such that o<p'r(l9 1) = 
(1, 1). The result thus follows. 
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Proposition 2: Let n be an odd number. Suppose s is the smallest integer such 
that 2s E 1 (mod n) or 2s = -1 (mod n). Then 

(i) a0(n) E 0 (mod s), 

(i i) p0(n) E 0 (mod s ) , 

(i i i) 60(n) E 0 (mod 2s), 

and (iv) y0(n) E 0 (mod 2s). 

Proof: We shall prove (iii). The proof of (iv) then follows immediately; that 
of (i) follows from Proposition 1 and the fact that if M is magic but not pan-
diagonal then <P(M) is not magic but <P2 (M) is magic; (ii) follows from the fact 
that <P(M) is symmetrical if M is, 

Let v = 2k. 

Now <Pr(ls 1) i s one o f : 

(m + 1 - 2k~1
9 m + 1 + 2k~1)5 (m + 1 - 2k~1

3 m + 1 - 2k~1), 

(T?? + 1 + 2 k _ 1
9 77? + 1 - 2 f e " 1 ) s (77? + 1 + 2k"1

9 77? + 1 + 2 / C _ 1 ) 9 

If r < 2s, then we see that 77? + 1 + 2 • 1 cannot be 0 (mod n) or 1 (mod n). 
Likewsies m + 1 - 2 cannot be 0 (mod n) or 1 (mod ri), So there is no a in 
Vh such that W p(l 9 1) = (1, 1). 

Suppose r = 2s. 

Now if 2s E 1 (mod n), then9 by Lemma 2S 

77? + 1 - 2 s * 1 E 0 (mod n ) and TT? + 1 + 2 s " 1 E 1 (mod n ) . 

I f 2s E - 1 (mod n ) s t h e n 

77? + 1 - 2 s " 1 E 1 (mod n ) a n d m + 1 + 2 s " 1 E 0 (mod n ) . 

I n e i t h e r c a s e , (PT(i9 j ) i s one of 

0 " , rc - £ + 1 ) , (i, j ) , (n - j + 1 , <£), (n - £ + 1 , n - j + 1 ) . 

Certainly9 there is a a in D^ such that 0(pir(is j) = (i* j) and the result fol-
lows . 

REMARKS 

Note that there are other operations which will also generate finite se-
quences of inequivalent magic squares of the same order. For example: 

(A) Cyclic permutation of the rows and/or columns of a pandiagonal magic 
square will produce an Inequivalent pandiagonal magic square. Hence SQ(n) E 0 
(mod n2). 

(B) Let n = 2TT? + 1. Then any permutation of the numbers 1, 29 . .., m ap-
plied to the first 77? rows and columns and to the last 7?? rows and columns (In 
reverse order) of a magic square of order n will result in an inequivalent 
magic square. Further5 if we start with a symmetrical square, then so are all 
other squares generated in this manner. Hence oQ (n) E 0 (mod 77?!) and p0(ft) E 0 
(mod ml). 
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More magic squares may be obtained by combining the operation <p with that 
of (A) or (B). 

ProposIt 
sition 2 

( 
(i 

and (i i 

on 3- Let n = 2m + 1 and suppose s satisfies the conditions of Propo-
Then 

G0 (ft) E 0 (mod s • ml) , 

p0(ft) ~ 0 (mod s • ml) 

60(n) = 0 (mod 2sn2). 

Proof: Let M be a pandiagonal magic square of order ft. For each <Pr(M) , we 
apply the operation in (A) to get ft inequivalent pandiagonal magic squares. 
It remains to show that these ft squares are not equivalent to any of those 
generated by <P* To see this, it suffices to note that (m + 1, m + 1) is always 
fixed under <P, while in the operation (A) it is being transferred to other 
positions. This proves (iii). 

To prove (i) and (ii), let M be a magic square of order ft« For each <P2 (M) 
(which is magic)5 we apply the operation in (B) to get ml inequivalent magic 
squares. We shall show that these ml squares are not equivalent to any one of 
those generated by <P« Since the operation <p transfers the central row and the 
central column of M to the main diagonals of the resulting square, it follows 
that we need only cons ider <P2k (M) . Consider the entries (£, m + 1), where i -
1, 2S ,.. 5 m« If k is odds then <P2k(is m + 1) = (77? + 1, x + 2yi) for some in-
tegers x and y. If k is even3 then <P2k(i3 m + 1) = (x - 2yis m + 1). Howevers 
under the operation in (B) , the entries (£, m + 1), where i = 1, 2S . . . , m go 
to (a(i)s m + 1) for some permutation a of the numbers 1, 2, ..,, m. This means 
that <P (M) cannot be equivalent to any one of the squares generated by the 
operation in (B). 
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