## ON THE LEAST COMMON MULTIPLE OF SOME BINOMIAL COEFFICIENTS

## HUGH M. EDGAR

San Jose State University, San Jose, CA 95192 (Submitted September 1984)

Let

$$\alpha = \binom{n-1}{k-1} \cdot \binom{n+1}{k}, \quad b = \binom{n+1}{k} \cdot \binom{n}{k+1}, \quad c = \binom{n}{k+1} \cdot \binom{n-1}{k-1},$$

$$d = \binom{n}{k-1} \cdot \binom{n+1}{k+1}, \quad e = \binom{n+1}{k+1} \cdot \binom{n-1}{k}, \text{ and } f = \binom{n-1}{k} \cdot \binom{n}{k-1}.$$

We prove that

L.C.M.
$$\{a, b, c\} = L.C.M.\{d, e, f\},\$$

where L.C.M. denotes the least common multiple. The proof technique is due to the late Ernst Straus and rests upon elementary properties of the p-adic valuations of Q, the field of rational numbers. The geometry of the situation is indicated in the figure below.



Multiplying each of the quantities  $\alpha$  through f by

$$\frac{k!(k+1)!(n-k)!(n-k+1)!}{(n-1)!n!}$$

produces the six corresponding quantities

$$(n+1)k(k+1)$$
,  $n(n+1)(n-k)$ ,  $k(n-k)(n-k+1)$ ,  $n(n+1)k$ ,  $(n+1)(n-k)(n-k+1)$ , and  $k(k+1)(n-k)$ .

Since  $|\text{L.C.M.}\{\alpha,\,\beta\}|_p = \min\{|\alpha|_p\,,\,|\beta|_p\}$  for every p-adic valuation  $|\ |_p$  of Q, the original problem is equivalent to proving that  $m_1(n,\,k) = m_2(n,\,k)$  for all (finite) primes p, provided we define

$$m_1(n, k) = \min\{ |(n+1)k(k+1)|_p, |n(n+1)(n-k)|_p, |k(n-k)(n-k+1)|_p \}$$

and

$$m_2(n, k) = \min\{|n(n+1)k|_p, |(n+1)(n-k)(n-k+1)|_p, |k(k+1)(n-k)|_p\}.$$

We first establish that  $m_1(n, k) \ge m_2(n, k)$ . In each of the three steps of this argument we make repeated use of the following standard facts concerning p-adic valuations of Q:

- (1) the ultrametric inequality:  $|\alpha + \beta|_p \leq \max\{|\alpha|_p, |\beta|_p\};$
- (2)  $|\alpha + \beta|_p = \max\{|\alpha|_p, |\beta|_p\} \text{ if } |\alpha|_p \neq |\beta|_p;$
- (3)  $|z|_p \le 1$ , for every integer z and for every (finite) prime p;
- (4)  $|z|_p < 1$  if and only if the integer z is divisible by the prime p (equivalently,  $|z|_p = 1$  if and only if the integer z is not divisible by the prime p).

We provide a detailed proof of the first step of the argument and then give somewhat abbreviated arguments for the remaining two steps.

Step 1. Assume that  $|(n+1)k(k+1)|_p < m_2(n, k)$ , that is,

- (i)  $|k+1|_p < |n|_p$ ,
- (ii)  $|k(k+1)|_p < |(n-k)(n-k+1)|_p$ , and
- (iii)  $|n+1|_p < |n-k|_p$ .

From (1) and (3), it follows that  $|k+1|_p < 1$  so that, from (4),  $p \mid k+1$ . Since (k, k+1) = 1, it follows that  $p \nmid k$ , which can be rewritten using (4) as  $|k|_p = 1$ . From (iii) and (3), it follows that  $|n+1|_p < 1 = |k|_p$  which, in conjunction with (2), allows us to conclude that

$$|n-k+1|_p = |(n+1)-k|_p = \max\{|n+1|_p, |k|_p\} = 1.$$

Going to (ii) and making use of the fact that  $|k|_p = 1$  and  $|n - k + 1|_p = 1$ , we get

$$|k(k+1)|_p = |k+1|_p < |(n-k)(n-k+1)|_p = |n-k|_p.$$

Finally

$$|n-k|_p = |(n+1)-(k+1)|_p \le \max\{|n+1|_p\}, |k+1|_p\} < |n-k|_p$$

from (1), and we have our desired contradiction.

Step 2. If  $|n(n+1)(n-k)|_p < m_2(n, k)$ , then we have

$$|n-k|_p < |k|_p$$
,  $|n|_p < |n-k+1|_p$ , and  $|n(n+1)|_p < |k(k+1)|_p$ .

Hence |n - k + 1| = |n + 1| = 1. Now,

$$|k|_p = |(n - k) - n|_p \le \max\{|n - k|_p, |n|_p\} < |k|_p,$$

a contradiction. Here we made use of the fact that  $|n|_p < |k(k+1)|_p \le |k|_p$ .

Step 3. If  $|k(n-k)(n-k+1)|_p < m_2(n, k)$ , then we have

$$|(n-k)(n-k+1)|_p < |n(n+1)|_p$$
,  $|k|_p < |n+1|_p$ , and

1986]

## ON THE LEAST COMMON MULTIPLE OF SOME BINOMIAL COEFFICIENTS

$$|n-k+1|_p < |k+1|_p$$
.

Since |n-k+1| < 1, we have |n-k| = 1, and so we get

$$|n-k+1|_p < |n(n+1)|_p \le |n+1|_p$$
.

However,

$$|n-k+1|_p = |(n+1)-k|_p = \max\{|n+1|_p, |k|_p\} = |n+1|_p,$$

since  $|k|_p < |n+1|_p$ . Hence, once again we have a contradiction.

Since  $m_2(n, k) = m_1(-k - 1, -n - 1)$ , and since  $m_1(n, k) \ge m_2(n, k)$  has already been established, we can finish the proof using the following chain of inequalities:

$$m_1(n, k) \ge m_2(n, k) = m_1(-k - 1, -n - 1) \ge m_2(-k - 1, -n - 1)$$
  
=  $m_1(-(-n - 1) - 1, -(-k - 1) - 1)$   
=  $m_1(n, k)$ .

Remarks: The result of this note can alternatively be deduced from the following previously established (see, respectively, [1], [2], and [3]) results:

$$(1) \quad \binom{n-1}{k} \cdot \binom{n}{k-1} \cdot \binom{n+1}{k+1} = \binom{n-1}{k-1} \cdot \binom{n}{k+1} \cdot \binom{n+1}{k}$$

$$(2) \quad \text{G.C.D.}\left\{\binom{n-1}{k}, \, \binom{n}{k-1}, \, \binom{n+1}{k+1}\right\} = \text{G.C.D.}\left\{\binom{n-1}{k-1}, \, \binom{n}{k+1}, \, \binom{n+1}{k}\right\}$$

where G.C.D. denotes the greatest common divisor.

(3)  $xyz = G.C.D.\{x, y, z\} \cdot L.C.M.\{xy, yz, zx\}$ , valid for arbitrary positive integers x, y, and z. A more involved result can be obtained using the fact (see [3]) that

$$xyz = G.C.D.\{x, y, z\} \cdot L.C.M.\{G.C.D.\{x, y\}, G.C.D.\{y, z\}, G.C.D.\{z, x\}\} \cdot L.C.M.\{x, y, z\}.$$

Finally, we ask whether such results have any combinatorial interpretation.

## REFERENCES

- 1. V. E. Hoggatt, Jr., & Walter Hansell. "The Hidden Hexagon Squares." *The Fibonacci Quarterly* 9, no. 2 (1971):120, 133.
- 2. E. G. Straus. "On the Greatest Common Divisor of Some Binomial Coefficients." The Fibonacci Quarterly 11, no. 1 (1973):25-26.
- 3. Marlow Sholander. "Least Common Multiples and Highest Common Factors."

  American Math Monthly (1961):984.

\*\*\*