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1. INTRODUCTION AND GENERALITIES

It is known that every positive integer can be represented uniquely as a
finite sum of F-addends (distinct nonconsecutive Fibonacci numbers). A series
of papers published over the past years deal with this subject and related
problems [1, 2, 3, 4]. Our purpose in this note is to investigate some minor
aspects of this property of the Fibonacci sequence. More precisely, for a
given integer k = 3, we consider the set A% of all positive integers »n less
than F, (as usual F; and L, are the kth Fibonacci and Lucas numbers, respec—
tively), and for these integers we determine:

(i) the asymptotic value of the average number of F-addends;
(ii) the most probable number of F-addends;
(iii) the greatest number m; of F-addends, selected from the set 4%, and
the integers representable as a sum of m; F-addends.
Setting

m, = [(k - 1)/2], (k=23) (1)

(here and in the following the symbol [x] denotes the greatest integer not ex-—
ceeding ) and denoting by f(n, k) the number of F-addends the sum of which
represents a generic integer n € 4} , we state the following theorems.

Theorem 1: 1 < f(n, k) < my.

Proof: Since F, = F, and since the F-addends are distinct, they can be chosen
in the set %, = {F,, F3, ..., Fy_,} the cardinality of which is |&| = k - 2.
Moreover, since the F-addends are nonconsecutive Fibonacci numbers, they can
be in number at most either |#|/2 (for [ﬁa] even) or (|%]| + 1)/2 (for |#]
odd). Q.E.D.

Theorem 2: The number N, , of integers belonging to ,4% which can be repre-
sented as a sum of m F-addends is given by

Nk,m = (k B Z ) l)'

Proof: Setting M = lgﬁ[ =k - 2, it is evident that Ny , equals the number
By, of distinct binary sequences of length M containing m nonadjacent 1's and
M - m 0's. The number By , can be obtained by considering the string

{v0v0Ov - v 0 v}
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constituted by M - m O's and ¥ -— m + 1 empty elements v, and by replacing, in
all possible ways, m empty elements by m 1's:

M-m+1
5 = ( .
M,m m )
Replacing M by k - 2 in the above relation, the theorem is proved. Q.E.D.
From Theorem 2, we derive immediately the following
Remark:

(2)

k-2, form=1
k,m

0, for m > my.

2. THE AVERAGE VALUE OF f(n, k)

In this section, we calculate the limit of the ratio between the average
value of f(n, k) and k as k tends to infinity. _

From Theorem 2, it is immediately seen that the average value f(n, k) of
the number of F-addends the sum of which represents the integers belonging to
N, is given by

m [k—l]
- 1 x 1 Z k-m-1
f(?’l; k) =——-——sz]<,"7=*};7‘_—1 Z m( ). (3)
!'/1/k|m=1 k m=1 m
Moreover, it is known [5] that the identity
My
2 (k- W)Nk,m = U, (%)
m=0
holds, where
k-1
Uy = X2 FpirFy (5)
m=0

from (4), the relation
My

My
Up =k LWy = L My,
m=0 0

m=

is obtained from which, by virtue of the well-known representation of the Fibo-
nacci numbers as sums of binomial coefficients [6], we get

my
Uy = KF = & mlly -
m=0
Consequently, we can write
U M
Yol = oy, = KFy = Uy (6)

m=0 m=1

The numbers U; defined by (5) satisfy the recurrence stated in the follow-
ing theorem.
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Theorem 3: U, = kF, - U, _,, with Uy =1, U, = 2.

Proof: Using the well-known identity F,,, = F F, +F F,_, and setting m = s,
k - m=t, we can write the identity

Fp = Fpak-m= FpoiFy v FpFy_pmon

thus getting E, ,,F_, = F, - F B _,_,. Therefore, from (5), we have

k - k-1 k-2
=X (Fk - Fka-m—l) = ka - BFyom-1= ka - B Fy g
m=0 m=0 m=1

Setting » = m - 1, from the previous relation we obtain
k-3
Uy = KF, _pgoFf’“Fk‘”‘z = kF, - Ug_,. Q.E.D.

From Theorem 3, the further expression of U, is immediately derived:

Uy = KkF, = (kK = F,_, + ==+ + (-1)™ (k - 2m)F,

k- 2my

My .
> (DY (k - 20)F_,;s (7

=0

where, as usual, m; = [(k - 1)/2].
Denoting by o and B the roots of the equation @’-x - 1 = 0, the following
theorem can be stated.

1

Theorem 4: f(n, k) is asymptotic to n
+ o

.
Proof: TFrom (3) and (6), we can write

Fou 001k = (77 o ))/x

and calculate the limit

— U
pin Foon w0k = il - )= on 1 -

which, from (7), can be rewritten as
rnk N
- g -1 .
%ig fn, K)/k = %32(ka - kF, +-i§a(—l)$ (k - 21)Fk_2i> (kFy)
Finally, using the Binet form for F,, we get

Mk . . ,
2: (_1)L~1(k - Zi)(OLk_ZL _ Bk—Zz)
lim f?n, K)/k = 11m vz
ko m » L k(ock _ Bk)
2 (=1 1(1 - 27/k)ak-21
= 1im =22 = 3 (-1)F g% = ——1—2 ~ 0.2764.
Q.E.D. ke ok i=1 1 +a

338 [Nov.



THE REPRESENTATION OF INTEGERS AS A SUM OF DISTINCT FIBONACC! NUMBERS

The behavior of f(n, k)/k versus k has been obtained using a computer cal-~
culation and is shown in Figure 1 for 3 < k < 100.
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Figure 1. Behavior of fzn, kY/k versus k

3. THE MDST PROBABLE VALUE OF f(n, k)

In this section, it is shown that the most probable number f(n, k) of F-
addends the sum of which represents the integers belonging to LA%, can assume
at most two (consecutive) values. The value of f(n, k) for a given k together
with the values of k for which two f(n, k)'s occur, are worked out.

From Theorem 2, it is immediately seen that fYns k) equals the value(s) of
m which maximize the binomial coefficient W ,; consequently let us investigate
the behavior of the discrete function

37 (®)

as n varies, looking for the value(s) ﬁh of »n which maximize it. It is evident
that ﬁh is the value(s) of »n for which the inequalities

AR U ®
and h-nys (h-n- 1
< 7 ) z ( n+ 1 ) (10)

are simultaneously verified. Using the factorilal representation of the bino-
mial coefficients and omitting the intermediate steps for the sake of brevity,
the inequality

5?2 -~ (5h + Tn + k> + 30 +220 (11)

is obtained from (9); the roots of the associate equation are

n, = (5h + 7 - Vh)/10, (12)
n, = (5h + 7 + VA)/10,
where A = 5k% + 10k + 9. From (11), we have
n, S n < ng. (13)
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Analogously, from (10), we obtain the inequality
5n2 = (5h - 3)n + h? - 21 < 0, (14)

from which the roots

1= - — 1
nl = (5h - 3 - VA)/10 (15)
n! = (5h - 3 +V4)/10
are derived. From (14), we have
n! <n<nl (16)

Since, for h > 2, the inequality n; < nj holds, the inequalities (13) and (16)
are simultaneously verified within the interval [n], n;]. Therefore, we have
n{ < ﬁh < 7ny. Since n; - n/ =1, the value

~

Ny, = [n!1+1 = [n] (17)

is unique, provided that n] (and n;) is not an integer. If and only if n] is
an integer is the binomial coefficient (8) maximized by two consecutive values
ﬁh,l and 7 , of n; that is,

{71h,1 =n
Ay, =n

Now we can state the following theorem.

_ _ 2 1/2
5k - 8 Sif + 4) ] b1

14
1° (7hn
! -

] + 1 = n, -

Theorem 5: f(n, k) = [

Proof: The proof is derived directly from (17), (17'), and (15) after replac-
ing » by Kk ~ 1 and n by m in (8). Q.E.D.

On the basis of (17’) and (15), we determine the values of k for which the
quantity

R, = (5k = 8 - (5k% + 4)¥?)/10

is integral, i.e., the values of k for which two consecutive values of m maxi-
mize Ny . thus yielding the following two values of f(n, k):

)
£y, k)

1]

Ry (18)
Ry + 1. (18")

Theorem 6: The most probable values of f(n, k) are both f;(n, k) and f;(n, k),
if and only if k = Foo»s=1,2, .

Proof: For R, to be integral, the quantity 5k? + 4 must necessarily be the
square of an integer, i.e., the equation

x® - 5k? = 4 (19)
must be solved in integers. On the basis of [7, p. 100, pp. 197-198] and by

340 [Nov.



THE REPRESENTATION OF INTEGERS AS A SUM OF DISTINCT FIBONACCI NUMBERS

induction on », it is seen that, if {xl, kl} is a pair of positive integers x,
k with minimal x satisfying (19), then all pairs of positive integers {x,, k)
satisfying this equation are defined by

(z, * V5k)"

x, * ngr =—\ =1, 2, ... . (20)
or-1t
Since it is found that x; = 3 and kl =1, from (20), we can write
r
z, + ngr = ﬁé_i_%il_ = 20%7. 21)
27"

From (19) and (21), we get the relation
(5k2 + 4)Y2 = 202" - 5k,
from which, squaring both sides, we obtain

1 o* -1 -
k=L @Z =l L gy o
V5 ol V5
Replacing k by F,,, R; reduces to (L,,_., - 4)/5; therefore, to prove the
theorem, it is sufficient to prove that, iff »r is even, then the congruence

Ly._; =4 (mod 5) holds.
Using Binet's form for L,, we obtain
1+8
I -
2r-1 22(1,_1)
where

r-1 _ r-1 _
5= 1 <2P2t 1>(¢§)2t = 2:(2r2t 1>(V3)2“_1)‘
t=1 t=1
Therefore, we can write the following equivalent congruences,
272D (1 + 8) = 4 (mod 5),
1 +5 = 22" (mod 5),
1 = 22" (mod 5),

which, for Fermat's little theorem, hold iff r = 25, s =1, 2, ... . Q.E.D.

4. THE INTEGERS REPRESENTABLE AS A SUM OF m; F-ADDENDS

In this section, the set of all integers n € 4 which can be represented
as a sum of m, F-addends [i.e., all integers such that f(n, k) = mk] is deter-

mined.
From Theorem 2 and (1), the following corollary is immediately derived.

Corollary 1:

Nk,mk =

{k/Z, for even k,
1, for odd k.

The following identities are used to prove Theorems 7 and 8.
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3
Identity 1: 2, F,; = F, , — L.
j=1 %

h
Identity 2: E: F2j+1 = Fzm+JJ - L.
i=1
m=-1
ldentity 3: 'ZOF2j+n = Fomin-1 = Fuone
iz

The proofs of Identities 1,2, and 3 are obtained by mathematical induction
and are omitted here for the sake of brevity.

Theorem 7: f(F, - 1) = m,.

Proof: (i) Even k.

For even k, we have m; = (k - 2)/2; it follows that k = 2(m; + 1)
and, from Identity 2,
My
Be-1l= Fzmk+n -1 =i§iE}i+1‘
(ii) odd k.
For odd k, we have my = (k -~ 1)/2; it follows that k = 2(m; + 1)

and, from Identity 1,
My
Fo- 1 =F2mk+1 -1l= .Zin‘
=1
In both cases, Fk ~ 1 can be represented as a sum of my, F-addends. Q.E.D.
From Theorem 7 and Corcllary 1, it is evident that, for odd kX, the only
integer n € A such that f(n, k) =m, is n = F; - 1. Moreover, it is seen
that, for even k, the integers n € A% such that f(n, k) =my; = (k - 2)/2 are
k/2 in number (F, ~ 1 inclusive); let us denote these integers by
Ag, s T =1, 2, ..., K/2.

Theorem 8: Ay g =Fp = Fp_pp =1, 2 =1, 2, ..., k/2.

Proof: For a given even k, the integers 4y, ; can be obtained by means of the
following procedure:

Ay =F, +F, +F, + "+ +F_  +F_, +F_,
A o =F, +F, +Fg + " +F_ +F_, + (F_))
Ap s =F, +F, +Fg + o +F o + (Fo_, +F_)

Ak,k/Z—Z =F2 +Fq, + (F7 4 e +Fk—5 +Fk—3 +Fk-—l)
Ak,k/z—l =F2 -+ (FS +F7 h S +Fk-5 +Fk—3 +Fk—l)
A wpp = EFg +Fg+F, 4 ooe + Fy o+ Fy_y +Fr_y)
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The mechanism of choice of the F-addends from two disjoint subsets of Z
[namely, {F,,} and {F,, ,,}, ¢ =1, 2, ..., (k - 2)/2] illustrated in the previ-
ous table yields the following expression of 4, _,

k/2-1-1 -2
Ap, ¢ = PZO Fz+2r+;Fk—2i+2s+3’
= g=0

from which, by virtue of Identity 3, we obtain

Ak*i - E}(k&'i)+1— £+ F2ﬁ—1)+k—2i+2 = Fgiea
= Fk—2i+1 -1+F - Ek—2i+2 =F -F _,;, - 1. Q.E.D.

The following corollary is derived from Theorem 8.

lorollary 2: Ay 1 =Fp_, - 1, (22)
Ag,o =Lp, = 1 (23)
Ak,k/z = Fk - 1. (24)

Proof: 1Identities (22) and (24) are obtained directly from Theorem 8. Iden-
tity (23) requires some manipulations; that is,
Ak,z = Fk - Fk—u - 1= F% - (SFk - 3Fk+1) -1
~Fy + 3(Fyyy = F) = 1 = -F +3F_; - 1
=27 , ~F_,~1=F_, +F_,-1=IL_,-1. QE.D.
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