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1. INTRODUCTION 

Pell polynomials Pn(x) and Pell-Lucas polynomials Qn(x) are defined in [7], 
[9], and [10] by the recurrence relations 

and 
Pn+2(x) = 2xPn+1(x) + Pn(x), PQ(x) = 0, P1(x) = 1, 

Qn + 2(x) = 2xQn + 1(x) + Qn(x), Q0(x) = 2, Q1(x) = 2X, 

with integer n unrestricted. 
Equation (1.1) may be written in the form 

Pr(x) = {Pr + 1(x) -- Pr_1(x)}/2x. 

Binet forms are 

Pn(x) = (a" - 3n)/(a - 3) 
and 

» = a" + 6", 

(1.1) 

(1.2) 

(1.1)' 

(1.3) 

(1.4) 

where a and 3 are the roots of the characteristic equation of (1.1) and (1.2) 9 
namely, 

2xt 0 

so that 

a = x + Vx2 + 1 
with a + 

6 = x - /;r2 + 1 
2̂ 5 aft = -1, a 

(1.5) 

2Vx2 + 1. (1.6) 

Explicit summation representations for Pn (x) and §„(#), and relations among 
thems are established in [7]3 [9]5 and [10]. 

Emphasis in this paper will be given to matrix methods so we introduce the 
matrix P which generates Pell polynomials and many of their properties ([7], 
[9]). Historical information about the background of this matrix is provided 
in [9]. 

Let 
~2x l" 

(1.7) 
1 0 

so that, by inductions 
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pn = 
P n + 1 ^ 

In («) 
Hence 3 

~ P n + l ( * ) 

_Pn (x) _ 
= 

s o 

Pn(x) = [1 

pn 

Pn c x) 

P „ - ! < * > -

_G_ 

Q]pn-1 
1 

0 
. 

(1.8) 

(1.9) 

(1.10) 

From [7, (2.1)], we deduce 

3»<*> J 
_ pn 

2x 

2 
and 

QAx) [1 0]p* 
2x 

2 

(1.11) 

(1.12) 

Although some summation formulas for Pn(x) and Qn(x) are recorded in [7], 
it is thought desirable to investigate the summation problem more fully. Ini-
tially, some well-established techniques are utilized to produce simple summa-
tions. More complicated techniques are derived to achieve a higher degree of 
completeness. 

As an example of the usage of the matrix (and determinant) approach, we 
demonstrate the Simson formula for Pell polynomials., [7, (2.5)], namely, 

Pn+1ix)Pn_x{x) - P2
n(x) = (-1)\ 

which may, of course, be established by means of the Binet form (1.3). 
More generally in the first instance, consider 

(1 .13) 

Pn
20r) - Pn+r(x)Pn_r(x) 

Pn„r(x) Pn(x) 
(1 .14) 

Pr(x) P ^ C r ) 

o l 

pn -v 
1 

_0_ 

1 

\ 

Pv (x) P (x) 
1 r - 1 

1 Pr + 10«0 

0 Pr (x) 

pn 

. . . by ( 1 . 8 ) , [ 7 , ( 3 . 1 4 ) ] 

, by ( 1 . 9 ) , = ( -1)" Pi(x) 
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Putting r = 1 in this generalized Simson formula, we obtain the Pell-analogue 
(1.13) of the Simson formula for Fibonacci numbers. 

Because of its importance and subsequent use, we append the difference 
equation [7, (3.28)] 

Pmn+r(x' (1.15) 

and the Pell-Lucas analogue [7, (3.29)] 

A result needed in Section 8, which is not specifically given in [7], is 

which may be proved by using (1.3) and (1.4). 

2. SOME SUMMATION TECHNIQUES 

A. Consider the series of matrices [cf. (1.8)] 

(1 .17) 

Then 

whence 

A=I + P + PZ + 

PA = P + P z + Pd + 

+ P n ~ z + P ' 

+ P n - X + Pn, 

_1_ 
2x 

_1_ 
2x 

by (1 .8 ) 

Now 

(P - I)A = Pn - P 
A = ( P - P ) ™x ( P n - I) 

"l 1 1 p n + 1 ( ^ ) " 1 PnM 

_1 1 - 2^J [/«(*> P n - i W " 1J 

" P n + l ( a ? ) + P " ( X ) " X P * ( a ? ) + P » - l ( a ? ) "" l 

[Pn(x) + P ^ f r ) - 1 P n _ 2 ( * ) + ? „ . ! « + 2X - 1J 

"1 
E ^ W = [i o],4 

v =1 0 
, by ( 1 . 1 0 ) , 

Hence 
E P r W = (Pn+1(a?) +P»te) - Dl2x. 

V = 1 

B. Using t h e B ine t form ( 1 . 4 ) , we have 

t Qr(x) = t (^ + eo 
r = 1 ^ = 1 

(2 .1 ) 
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which3 with the application of the summation formula for a geometric series and 
the properties of a and 3s reduces to 

E «*.(*> = (en+i(^) + Qn(oo) - 2x - l)l2x. (2.2) 

Clearly, the matrix technique A could be used here also. 

C. Next, we use difference equations derived from the recurrence relation 
(1.1)j namely9 

2xP1(x) = P2(x) - PQ(x) 

2xP3(x) = Ph(x) - P2(x) 

2xP2n_1(x) = P2n(x) - P2n_2(x) 

whence, on addition and simplifications 

tP2r-1M = P2n(x)/2x. ( 2 . 3 ) 
r = 1 

Summation formulas fo r 

l P 2 P W 5 JlQ2r.1(oo)9 and ZQ2r(x) 
r =1 r = 1 r = 1 

are given in [9], as indeed are (2.1), (2.2), and (2.3). 

D. Fourthly, we utilize an extension of technique C. In this method, our aim 
is to find sums of series of Pell polynomials with subscripts in arithmetic 
progression. 

Let 

^1 ~ L, Pim (x) > S2 - L ^im-lW^ 
i = l i = l 

.^ Pim - 2 ̂  5 ' ' • s Sm ~ E Pim- (m - 1 ) ^ " (2.4) 
i = l 

Then, the set of equations connecting the members of {S^} in (2.4) may be 
shown to be: 

2xS1 + S2 

-S1 + 2xS2 + S3 

-S2 + 2xS3 + S^ 

= 0 

= 0 

Sm _ 2 + 2xSm _ i + S n 0 

S, -^-1+ 2^m =P
mW " W 

(2.5) 

Next, write: 
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2x 
-1 
0 

*i = $» 

1 
2x 
-1 
0 s, 

0 
1 

2x 
-1 
0 

' $m ~ 

&-• 

Prjn + 1(x) - P±(x) 
0 
0 

*»*(*> - Po^> 

where ^ and ̂ are m x 1 matrices. 
Denote by e^- the element in the ith row of <^ 
Matrices in (2,6) are then defined by: 

1 
2x 

(2.6) 

-t, f + I 
5t - l.i 

= 2a: 
= - 1 
= 1 
= 1 
= - 1 

fo r 

for 
fo r 

i = 1, 

i = 1, 
i = 2 , 

2 , . 

2 , . 
3 , . 

.., m 

. . s 777 

. . , 777 

0 otherwise. 

(2.6)' 

All the entries in Ĵ , except those in the first and last rows, are zero. 
Write 

*w(*) = ^ i : 4 : (2.7) 

,(£) Designate by ijim (x) the determinant obtained from tym(x) in (2.7) by replac-
ing the i th column by «̂" in (2.6). 

Cramer's Rule then gives the solution of the system of equations (2.5) as 

S- = . ' , . (2.8) 

Comparing this result with (2.10) below leads us to the identity [compare 
(3.15, (3.16)] 

ipm(x) = Qm(x) - 1 + (-l)m + \ (2.9) 

which may be proved by induction. 

One may use whichever of the above techniques, A-D, is most appropriate to 
the occasion. 

This brief illustration of four simple techniques is by no means exhaus-
tive. Other methods will be suggested later. 
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s 

T P 
v =1 

i m i l a r l y 5 

r = 1 

k(x) 

k(x) 

— 

= 

More generally9 let 

&=Pm+k(x) + P2m+k(x) +P3m+k(x) + ••• +Pm+k(x). 

:. -Qm(x)0>= -Qm(x}Pm+k(x) - Qm(x)P2m+k(x) - QJx)P3m+k(x) - ... 

(_1)^= (-DmPm+k+ (-DmP2m+k(x) + (-l)mP3m+k(x) + ... 
• •• + ( - l ) m p m + , ( x ) . 

Add and use equation (1*15) to obtain, with care, 

i-lflP^^ix) - Pk(x)} - iPm(n+1) + k(x)- Pm+k(x)} 

i-Qm(x) + (-ir \ 2 A 0 ) 

i - Qm(x) + c - i r ' ( 2 > 1 1 ) 

Results (2.10) and (2,11) could be obtained laboriously by other means, 
e.g., by using the Binet form or the matrix P. 

Various specializations of (2.10) and (2.11) appearing in [9] are of inter-
est, as, e.g., 

ZP3r(x) = {P3n + 3(x) + P3n(x) - P3(x)}/Q3(x). (2.12) 
V = 1 

Several interesting simplifications arise when, m = 4a and m = 4a+ 2, e.g., 
after manipulation, 

tphar+kix) =P2ain+1) + k(x)P2an(x)/PZa(x). (2.13) 
T =1 

Details are given in [9]. 

3. DETERMINANTAL GENERATION 

Following the ideas and notation in [7], let us define the determinants of 
order n below, where d • • is the entry in row £ and column j % 

A n , m W : 
d7;7; = Qm(x) i = 1, 2, . . ., n 

(3.1) di,i + i = 1 £ = 1,2, ..., n - 1 
di,i-i = (~l)m i = 2, ..., n 
dij = 0 otherwise. 

<5niTn(x) : as for l\n^m(x) except that diii + 1 = ~15 di^_1 = -(-1) . (3«2) 

A5! m(a0 : as tor l^n^m (x) except that d12 = 2. (3.3) 

6*>m(x) : as for 6n>m(x) except that d12 = -2. (3.4) 
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Using the method of induction, we can establish that 

An,„(*) = P ( n + 1 ) ^ ) / ^ ) ' (3.5) 

When m = 1, (3.5) becomes equation (5.5) in [7]. For m = k + 1, we use 
equation (1.15) to validate (3.5). 

Similarly, we demonstrate with the aid of (1.16) that 

and 

In a similar vein, we may show that 

Suitable expansion down columns or along rows yields: 

A„>m(x) = Qm(x)An_ltm(x) + (-1)" ]f! - 2, m (x) ; 

Sn>m(x) = Qm(x)Sn-ltm(x) + (-Dra+16n.2>m(x); 

A*,m(*) „(x)A*n_ (x) + (-1) m + l A * xn - 2, m (x) 

= Qm(x)kn_1>m{x) + 2(-l)m+1An-2,mW; 

,(x) = Qm(x)6*n.1,m(x) + (-l)m+16*_2>m(x) 

= Qm(x)Sn.1,n(x) + 2(-l)m+16n.2,m(x). 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Putting m = 1 in (3.5)-(3.8), and in (3.9) and (3.11), we readily obtain 
the equations (5.5)-(5.8), and (5.9) and (5.10), respectively, in [7]. More-
over, A„sl(l) = 6„;1(1) = Pn + 1 and A*n>1(l) = 6*,i(l) = Qn, where Pn + 1 and Q„ 
are Pell numbers and Pell-Lucas numbers, respectively, occurring when x = 1. 

Variations, though small, of the determinants (3.1)-(3.4) above and of their 
specializations when m = 1, as given in [7], are used in [9] to obtain (3.5)-
(3.12). Mahon, in [9], conceived these determinants with some complex entries 
as extensions of a determinant utilized in [2] and [8]. 

Next, consider the determinant w„jW(x) of order n defined by 

M n , » W 

dii = QmW 
di3 i +i = -1 
di,i-i = - ( - D * 
dnl = (-Dm 

dln = 1 
di, = 0 

i = 1, 2 , . 
i = 1, 2 , . 
i = 2 , 3 , . 

o t h e r w i s e . 

. . n 

. . , n 

. . , n (3.13) 

Careful evaluation of this determinant, with appeal to (3.8) and (3.12) 
gives us 

^nim(x) }(x) + ( - i r + (-n m(n- 1) 

In particular, when m = 1, and writing (x)n(x) - oonjl(x), we get: 

u)n(x) = «„(*) - 1 + (-l)n + 1; 

(3.14) 

(3.15) 
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(^2n_1(x) = Qln.1{x)i (3.16) 

^„G*0 = 4(x2 + l)P2
n(x), by equation (2.18) in [7]; (3.17) 

^n+2(a?) = Qln+1te); (3.18) 

where, to obtain (3.18), we may use result (3.25) in [7] in which n and r are 
both replaced by In + 1 [Q0(x) = 2]. 

Observe that -d)n(x) in (3.15) is precisely the form of the denominator in 
(2.10) and (2.11). [Cf. (2.9).] Indeed, it was in this context that the need 
to investigate the determinants b}n(x) arose. 

k. ALTERNATING AND RELATED SERIES 

To avoid tedium and to save some space, we will as a rule hereafter merely 
give the results of the more important summations which we desire to record. 
Some of the proofs are quite difficult. 

X>PrGr) = [nxPn+1(x) + {(n - l)x - l}Pn(x) - Pn_1(x) + l]/2^2. (4.1) 
r= 1 

Proving this is straightforward. From (1.1)', we have 

2xP1(x) = P2(x) - PQ(x). 

Multiply this by 2, 3, ..., n in turn, add, and use (2.1). Then (4.1) results. 
Similarly, we establish 

Y,rQp(x) = [nxQn+1(x) + {(n - l)x - l}Qn(x) - Qn_1(x) + 2]/2x2; (4.2) 
r=l 

£ (-l)rrPr(x) = [(-l)nnxPn + 1(x) + (-l)n-1Pn(x){(n - l)x + 1} 

+ (-l)nPn_1(x)-l]/2x2; (4.3) 

E(-lVrQr(x) = [(-DnnxQn + 1(x) + {-l)n'1Qn(x){ (n - l)x + 1} 

+ ( - l ) X - ] > ) " « i W + Q0(x)d + x)]/2x2. ( 4 . 4 ) 

More g e n e r a l l y , suppose we w r i t e 

F(n, x, y) = £ Pmr+k(x)yr ( 4 .5 ) 
r=l 

and 
G(n, x, y) = Y.Qmr+k{x)yr. ( 4 . 6 ) 

r= 1 

Now use (1.15) and (1.16) for Pm+k(x) 9 Plm+k(x), .B.sPrm + k(x) and Qm + k(x) , 
Qim + k ^ ' —" Qmn + k(x)9

 a d d a n d obtain explicit expressions for F(n, x, y) and 
G(n, x, y) • Details of these calculations are left to the reader. If we then 
put y = 1, we derive formulas for 

n n 
(x) and T.Qm.+ kix). 
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On the other hand, y = -1 leads to formulas for 

E C - D ^ ^ O c ) and ±(-lfQm+k(x). 
v = 1 r = 1 

Differentiating with respect to y in (4.5) and (4.6) gives 

r = 1 

E ^ + i W = G'(n, x, 1), (4.8) 
r= 1 
£(-l)p-1rPm,+ ,,(x) = F'(n, x, -1), (4.9) 
r= 1 

t(-l)r'1rQmr+k(x) = G'(n, x, -1), (4.10) 
P= 1 

in which the prime denotes the derivative with respect to y. When m = 1, /c = 
0 in (4.7)-(4.1Q), (4.1)-(4.4) occur. 

Next, consider P1(x) = {'P2(x) - P0(x)}/2x from the recurrence (1.1)'. Mul-
tiply this equation by 22, 32, . .., n2 in turn, add, and use (4.1). Then 

X>2Pp(x) = [2n2x2Pn+1(x) + 2(n - l)x{(n - l)x - 2}Pn(x) 

- 4{(n - 2)x - l}Pn_1(x) + ^Pn_2(x) - 4]/4x3. (4.11) 

Similarly, 

E ^ P ( X ) = [2n2x2Qn+1(x) + 2(n - l)x{(n - l)x - 2}Qn(x) 

- 4{(n - 2)x - l}Qn_1(x) + hQn_2(x) - kx2 - 8]/4^3, (4.12) 

Y,(~l)rr2Pr(x) = [(-l)n2x2n2Pn+1(x) + {-l)n-12x(n - l)Pn(x){x(n - 1) + 2} 

+ 4(-l)n"2Pn_1(^){l+ (n- 2)x] + 4(-l)n"1Pn_2(x) -4]/4;c3, 

(4.13) 

E(-l)Pp2^p(^) = i(-l)n2x2n2Qn + 1(x)+ (-l)n~12x(n - l)Qn(x){x(n - 1) + 2} 

+ 4(-l)n-2^_1(x){l+ (n - 2)x] + ^(-l)n~1Qn_2(x) 

+ 4x2 + S]/^x\ (4.14) 

Other methods for obtaining the above results in this section are avail-
able, for example the difference equation technique employed in [9], although 
this involves a great deal of complicated algebraic manipulation. Of the vari-
ous approaches open to us for obtaining the summations, perhaps the most power-
ful and most appealing procedure is that using difference equations. Indeed, 
by employing one such difference equation, Mahon [9] has found formulas involv-
ing the generalized summations 

irtPmp^k{x) and £>*«„„.+ *<*), 
T= 1 P= 1 

but the results are not a pretty sight!. 
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To give a flavor for these difference equationss we record one used in the 
construction of the formula (4oil) by this methods namelys 

(r + D2Pm(r + 1) + ,(*) - QJx)r%r+k(x) + (-l)m (r - 1) 2Pm(r_ x) + k(x) 
= 2rPm(x)Q^+k(x) + Qm(x)Pm, + k(x). 

Many similar complicated results are given in [9]. 
To conclude this section, we append some sums of cubes of Pn(x) and Q (x) 

obtained with the aid of the Binet formulas (1.3) and (1.4). 

l P r
3 W = [?3n+30c) +

 p
3nW - 3(4x2 + 3){(-l)n(Pn+1(x) - Pn(x)} 

+ 8(x2 + l)]/4(x2 + l)«3(x). (4.16) 

Y.Ql(x) = [Q3n+3(x) + Q3n(x) - Q3(x) - Q0(x) + 3(4x2 + 3){(-!)"Qn + 1(x) 
r =1 

2n(a0) - «x(x) + Q0(x)}]/Q3(x). (4.17) 

L(-l)rP^(x) = [(-l)*{P3n+3(x) - P3n(x)} - P3(x) - 3(4x2 + 3){Pn+1(x) 

+ Pn(x) - l}]/4(x2 + l)S3(x). (4.18) 

Y.(-DrQl(x) = [(-l)"{«3„+3(x) - Q3n(x)} - [Q3(x) - «0(x)} 

+ 3(4x2 + 3){«n+1(a0 + Qn(x) - Q1(x) - Q0(x)}]/Q3(x). 

(4.19) 

5. SERIES OF SQUARES AND PRODUCTS OF Pn(x) AND Qn{x) 

Multiply both sides of (1.1)' by Pr(x) and add. Then 

LP2(x) = Pn + 1(x)Pn(x)/2x. (5.1) 
p = 1 

Similarly, 

E G * (*) = {Qn+1(x)Qn(x) - te}/2x. (5.2) ? 2 i 

r = 1 

Again9 in this developments the method of difference equations has general 
applicability* For instance, after much algebraic maneuvering, one can obtain 
the difference equation appropriate to (5.1), namely5 

P*+1(x) - (Ux2 + 2)P2(x) +P*_1(x) = 2(-l)n. (5.1a) 

More generallys difference equations can be applied to find formulas for 

n n 
T*p^+k(x) and JlQ2

mr+k(x)a v=1 r=1 

For the former summations for instances the difference equation is 

PmV + l) + ̂  - QZm(^Prnr+k(^ +3,%-!) + *<*) = 2Pm2(x)(-l)^+fe, (5.1b) 
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which reduces to the simpler form (5.1a) when m = 1, k = 0 (and r is replaced 
by n) . 

If we multiply both sides of (1.1) by Pr_1(x) and add, then, by Simson's 
formula (1.14) , 

Y.Pr_1{x)Pr(x) = {P2(x) - h(l - (-l)n)}/2ar. (5.3) 

Similarly, 

t.QT.1{x)Qr(x) = {Q2(x) - 4 + 2(x2 + 1)(1 - (-l)n)}/2x. (5.4) 
P= 1 

Alternating series may be summed using (1.1)'. First, write 

D = £ (-l'fP^(x), E = Z (-l)r_1^ Ax)Pr(x). 
r=l r=l v x 

Then, multiplying both sides of (1.1) f by (-l)pPr (x) and adding gives 

2xD - IE = (-l)nPn(x)Pn+1(x) (i). 

Next, multiplying both sides of (1.1)' by (~l)r~1Pr_ (x) and adding gives 

2D + 2xE = (~l)nP*(x) - n (ii) . 

Solve (i) and (ii), and use (2.1) and (2.3) in [7] to obtain 

E (-ifP^x) = {(-l)nQn + 1(x)Pn(x) - 2w}/4(*2 + 1) (5.5) 

and 

£ (-Dr-1Pr.1(x)Pr(x) = {(-l)n+1P2n(x) - 2nx}/h(x2 + 1). (5.6) 
P= 1 

Similarly, 

t(-DrQ2
r(x) = (-l)nQ(x)Pn+ (x) + 2(w - 1) (5.7) 

r = 1 
and 

£,(.-lV-1QP_Ax)Q(x) = 2nx + (-1)™+1P, (x). (5.8) 
r= 1 n 

Now multiply both sides of (1.1)' by (-1) rPr(x) and sum. Write 

D, = E ( - 1 ) P ^ and E. = L ( - 1 ) P ( 2 P - 1)P, _ (^P^fe) . 
-1- r = 1 r = l 

Then 

2x2}, + tf, = n(-l)nPn(x)Pn+1(x) (iii), 

W± - 2xE1 = (-l)"(2w + l)P* (a?) - n2 (iv), 

where, in (iv), we have multiplied both sides of (1.1)' by 

(-l)r'-1(2r - DPp_Ax) 

and summed. 

300 [Nov. 



r= 1 
and 

MATRIX AND OTHER SUMMATION TECHNIQUES FOR PELL POLYNOMIALS 

Solve (iii) and (iv) to obtain 

£(-l)rrP*0r) = [(-DnPn(x){nQn + 1(x) + Pn(x)} - n2]/Mx2 + 1) (5.9) 

and 

E ( - D P " 1 ( 2 P - l)Pr_1(x)Pr(x) = [2(-l)nPn(x)(xPn(x) - nQn(x)) 

- 2n2x]/^(xz + 1). (5.10) 
Similarly, 

t(-DrrQ2
r(x) = (-Dn[nQn(x)Pn+1(x) + P2 (x) ] + n2 (5.11) 

Y,(-l)r-l(2r - l)Qp_1(x)Qr(x) = 2(-lfPn(x)[xPn(x) - nQn(x)] + 2n2x. 
V = 1 

(5.12) 
Formulas for 

t(-irP^ + kM and ± ( - i y Q l + k(x) 
r=1 r= 1 

may be established by employing appropriate difference equations, e.g., (5.1b) 
in the first case. 

6. COMBINATORIAL SUMMATION IDENTITIES FOR Pn(x) AND Qn(x) 

Binomial coefficient factors associated with summations involving Pn (x) and 
Qn(x) may be introduced to yield some useful formulas. The techniques for de-
riving these formulas are varied. Some approaches are indicated below. 

Binet formulas (1.3) and (1.4) may be used to derive the following, for 
which proofs may be found in [9]" 

k 
In 

z 
k = 0 

In Lo(2%+ yk+j(x) = 4 - V 2 + i r - P 2 n + 2 , + 1 ( x ) . (6.4) 

A considerable number of combinatorial identities relating to Pn(x) and 
Qn(x) may be determined. Among these are the general explicit expressions 
(developments of ideas for Fibonacci numbers in [8]—see also [3]). 

P„W = j ^ V l ) ^ - 1 ^ " I ~ y^-^ixAPrix) (6.5) 

«TO<*> = T C - D ^ ^ T T ^ X C ~k
 kYi2k^> « * o- (6-6) 

Proofs of (6.5) and (6.6) are by the method of mathematical induction. 
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Putting r = 1 in (6.5) and (6.6), we deduce the explicit expressions for 
Pn(x) and Qn(x) given in [7] as equations (2.15) and (2.16), respectively. 
Other summation formulas for Pn(x) are given in [9], where, further, combina-
torial expressions are obtained for P(2i + 1)r+k(x) -> P2ir+k(x^> ®{2i+ i)r+ lSx^ ' a n d 
®2ir + k (X^ ' 

Bergum and Hoggatt, in [1], found expressions for sums of numbers of recur-
rence sequences as products of these sequences. It is possible to apply their 
methods to polynomials. 

Two examples of this type of result are herewith given, while many others 
are derived in [9]. 

toP„ + ltkiW =Pn+2(2J-m(x)J}1
Q2<k(x) (k>D- (6.7) 

ioQn+C2i.1)k(x) = Qn+2(2J-K1)k(x^TloQ2ik(x) (?C even). (6.8) 

To establish (6.7), we need equation (3.22) in [7], whereas (6.8) requires 
(3.23) in [7] together with the result for Qn(x) corresponding to (6.7) for 
Pn(x), namely, (6.7) with Pn(x) replaced by Qn(x). 

7. MATRIX SUMMATION METHODS 

In Section 1, the matrix P was used to obtain sums of series in which the 
terms contain Pell polynomials of degree one. Since the particular methods 
employed there were not especially convenient, we turn our attention to a more 
fruitful matrix approach, developing an idea expounded in [6]. Applying the 
Cayley-Hamilton theorem to the matrix P in (1.7), we have 

P2 = 2xP + I (7.1) 
whence 

P2n + j = (2xP + I)nPj. (7.2) 

Equating appropriate elements on both sides with the aid of (1.8)., we ob-
tain the combinatorial summations 

P2n + j(x) = t (") (2x)rPr + j(x) [2x = P2(x)] (7.3) 
r = 0 ̂  ' 

P2n+1 + d(x) = E(;)(2a:)rP, + 1 + i(x). (7.4) 

p = 0 
and 

r = 0 

Post-multiplying both sides of (7.2) by the column vector [2x 2] (the 
transpose of the corresponding row vector), and appealing to (1.11), we find, 
on equating appropriate elements, that 

e 2 r + <7-(*) = t (n
r)(2xfQr + j(xy (7-5) 

r = 0 ^ ' 

e2 n + 1 + /*> = t (^)(2x)^r + 1 + . ( x ) . (7 .6 ) 

p = 0 
and 

r = o 

Next , c o n s i d e r 
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In 

p = 0 

Since 

(7.7) 

E (2^)Q2k + r(x) = 22ntx* + irQ2n + r(x). (7.8) 

£ ('£)P2* + 1' = P^(p2 + J)2n 

= Pr{2(xP + I)}2n by (7.1) 

= 22nPr(x2P2 + 2xP + I)n 

- 2Zn(x2 + l)nP2n + r by (7.1) again, 

whence 

E ( ^ K w 0*0 = 22n(x2 + l)nP Or). 
k = 0 x ' 

Likewise, from (1.11), 

In 

E 
k = 0 

Similarly, 
E 2K £ > 2 k + r(*> = 22"(x2 + D ^ 2 n + r + 1(x) (7.9) 

and 
2 E + 1 ( 2 n

k
+ > 2 f c + r ^ ) = 22M + 2 ( ^ 2 + Dn+1P2n + r+1(x). (7.10) 

From (7.1) it follows, since P 2(x) = 2#, P3 Or) = kx1 + 1, that 

P3 = P30c)P + P 2 W J , (7.11) 

whence, after calculation, 

p3n+dw = E (")prp^)pr^)pn-r+^)- <7-i2> 

(7.13) p3n+J'[?] = r E o (r ) p r r ^) p
2 ^) p n " + 

Note in (7.12.) and (7.14) the emergence of extra terms in the summation, a 
fact which was hidden in (7.3) and (7.5) by P^ix) = 1. 

More generally, one can show that 

r= 0 x 7 
and 

ekn+J-(x) = r E o ( ; )pr r ( ^ p ^- i ( a ; ) «n-r + ^) - <7-16> 

Special cases of (7.15) and (7.16) occurring when k = 2 are given in (7.3) 
and (7.5), respectively, in equivalent forms. 

From (7.11) we deduce 

P3(x)P = P3 - Pz(x)I9 (7.17) 

1986] 303 



and 

MATRIX AND OTHER SUMMATION TECHNIQUES FOR PELL POLYNOMIALS 

whence 

P^(x)Pn + d = (P3 - P2(x)I)nP3', (7.18) 

from which it follows that 

Pn
3(x)Pn + jW = t (-Dr(^)P3(n_r)+ .(x)P>). (7.19) 

Similarly, 

P^)Qn+Ax) =jtQ(-l)r(n
p)QXn_r)^(x)pr(x). (7.20) 

More generally, 

Pk
n(X)Pn + J(x) = i^-iy^PHn_r)+.(x)Pkr_i(x) (7.21) 

Pk
nWQn + j(x) = iQ(-l)"(n

r)QHn_r)+.(x)Pk^x). (7.22) 

By (1.8) and (1.15), we may prove 

pmr + k = Q (x\pm(r~ ^k _ (_nmpm^-2) + ̂ a (7.23) 
Hence 

p(mr+k)n = p{m(r- 2) + k}n(Q^ { x ) p m _ (. 1 )« J ) n i ( 7 e 2 4 ) 

Equating appropriate elements yields 

Putting k = 0 in (7.25) produces a formula for Pmvn (oo) . 
Again using (1.15), three times now, we obtain another form of (7.23): 

pmr+k = Q^(x)pm(r-2) + k_pm(r-4) + km (7.26) 

Following the reasoning outlined in (7.24) and (7.25), we derive alterna-
tive formulas for P(mr+k)n^x^ anc^ Pmnr (x^ which closely resembly (7.24) and 
(7.25). 

Equation (7.25) may be generalized further by extension of (7.26) to get 

P(mr+k)n(x) =.E(-D i ( m S + 1)(")C"^)^(,-s) + ̂ - m e i W (7.27) 

with a corresponding simplification for Pmrn (x) when k = 0. 
Since, by (7.23), 

Qm(x)Pmr + k = p^-±) + k{p2m + (_ 1 ) W j ) (7.28) 

we may demonstrate that 

Qn
m(x)P(mr + k)n(x) =.E(-Dm i(;)p{ m ( r + 1) + fc}„.2mi(x) (7.29) 

with a specialization when /c = 0. 
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Arguments similar to those used to obtain the general result (7.27) may be 
utilized to prove that 

®mS(X^P(mr+k)n = -to " ^ \ i ) P{m(r+s)+k}n- 2ms i , (X) (7.30) 

leading to the simpler form when k = 0. 

•8. THE MATRIX SEQUENCE {nv} 

Ideas introduced in [5] for Fibonacci numbers are here expanded to apply to 
Pell polynomials. 

Now, a generalization of the matrix P is the matrix 

S = 
0 0 1 
0 1 hx 
1 2x hx1 

Induction demonstrates that 

i 2 

sr 
P*(tf ) 

2Pn_1(x)Pn(x) P2
n{x) + Pn_1{x)Pn + 1(x) 2Pn+l(x)Pn(x) 

PZ&) 

(8 .1 ) 

( 8 . 2 ) 

The c h a r a c t e r i s t i c equa t i on of S i s 

X3 - (4ic2 + 1)X2 - (4a:2 + 1)X + 1 = 0 . ( 8 . 3 ) 

From the Cayley-Hamilton theorem applied to (8.3)9 we have the recursion 
formula 

Sn[S3 - (4^2 + l)S(S + I) + I] 0. (8.4) 

Corresponding elements in Sn Sn , Sn+1, and Sn must satisfy (8.4). 
Therefore, from (8.2)9 we have the identities 

(8.5) 
and 

P2
n + 3(x) - (4x2 + DP*+2(x) - (4*2 + DPn

2
+1(*) + PnM = 0 

Pn+3^Pn + ^ ~ <**' + ^ P
n + 2^Pn + 3 ^ " ^ + UPn +1 ^ P n + 2 <*> 

+ Pn^Pn + l ^ = °- ^8'6) 

[Parenthetically, we remark that the Cayley-Hamilton theorem may be employed 
with S to derive the sums given in (5.1) and (5.3).] 

Again, after a little algebraic manipulation, the Cayley-Hamilton theorem 
leads to 

(5 + j) 3 = 40c2 + l)S(S + J). 

Mathematical induction establishes 

(S + I)2n+1 = 4"(*2 + l)nSn(S + I). 

Now multiply both sides of (8.8) by S°. 
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Equate corresponding elements to obtain 

2n + 1 IT X I rj I 1 \ 

: ? 0 ( k )#+*<*> " e(x2 + 1 ) n P 2 n + 1 + 2i <*> ^ ^ < 3 - 2 0 > l - ( § - 9 ) 
•1. + 1 . rs I 1 V 

k = 0 

2n+l 

k = 0 

By [ 7 , ( 2 . 8 ) ] we have 

2n+ 1 

E 
k = 0 

whi l e by (1 .17) we have 

^(2n
k
+ y k ^ ^n+1(-2 ^ r + % n + 1 ^ , 

2n+l 

k %(2nk %^^k+i^ = 4 " + 1 ^ 2 + v n + l p
2 n + ^ 

with similar results to those in (8.9) and (8.10) when k is replaced by k + j 
in (8.11) and (8.12). 

If, now, in (8.8) we multiply both sides by (S + I)SJ, we get 

and 
fQ(2nk 2K+/*> - 4 " ^ + ^ 2 n + 2 J + 2 ^ 

£ 2 ( 2 V 2)Pk + j(*)Pk + J+1M = 4»<«* + l > X + w + 3 < * > . ' 

(8.13) 

(8.14) 

When use is made of [7, (2.8)], (1.17), and both sides of the formula for 
(8.8) multiplied by (5 + I)SJ, we derive 

2n+2 

and 
2̂ + 2 

? n ( 2 V %,<*>«*+,• !<*> - 4"+1^2 + 1>S+1*ta+2,-+3<">-
2n+2 

(8.15) 

(8.16) 
£ = o 

Extending the forms of the matrices P and £ further, we have 

0 
0 
0 
1 

0 
0 
1 

2x 

0 
1 

kx 
hx2 

1 
6x 

\2x 
8x 

for which the characteristic equation is 

A4 - (8x3 + 4rc)A3 - (16x4 + 12x2 + 2)A2 + (8J:3 + 4;r)A +1 = 0, (8.18) 

From which are obtained (see [9]) forms for Tn and formulas for three cubic 
expressions in Pell polynomials corresponding to the two quadratic ones in 
(8.5) and (8.6), and an expression for 

L Pi (x) 
which is a variation of (4.16). 
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Matrices S and T are elements in a sequence of matrices {nv}, 

"0 l" 
J = [1]. 2^ 

the order of rV being p. 

1 2x 
7 = S9 hV = T, ..., P 7 , (8.19) 

The element v • A of P7 in the i,th row and j th column is 

^a \j + % - v - 1/ 

It is conjectured that the characteristic equation of PF is 

where 

£(-i)r*<*-">]/2{r, fe}xr-" = o, 
k-o 

{r, k} = Tl {Pf (x)}/ll {Pi(x)}rn{Pi(x)}5 0 < & < r, 
1=1 / i=0 i=l 

(8.20) 

(8.21) 

(8.22) 

using the notation (extended) of [4]. That is, the symbol {p, k] represents a 
generalization of a binomial coefficient. Following the ideas in [4], we note 
the results: 

whence 

and 

{p, k} = {P, r - k] by (8.22); 

{p, P} = 1 by (8.22); 

{p, 0} = 1 by (8.23) and (8.24); 

{P, 1} = {PS P - 1} = Pr(x) by (8.22) and (8.23). 

Next, we write 

{p, k] - Pr(x)C(x)9 

{p - 1, k] = Pr_k(x)C(x) 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

(8.27) 

(8.28) 

(8.29) {p - 1, k - 1} = Pk(aOC(a;). 

Further, 

{p, A:} = Pr_k + k(x)C(x) 
= Pr_k(x)Pk+1(x)C(x) + Pr_k_1(x)Pk(x)C(x) by [7, (2.14)], 

so, by (8.28) and (8.29), 

{*» k] = Pr_k+1(x){r - 1, fc - 1} + Pfc + 1Gc){2? - 1, &} , (8.30) 

a type of Pascal triangle relationship. 
Similarly, 

{p, £:} = Pp_?c_1(x){p - 1, k - 1} 4- Pk_±(x){r - 1, fc}. 

Adding (8.30 and (8.31), and invoking [7, (3.24)], we deduce 

(8.31) 
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2{P5 k] = Qr_k(x){r - 1, k - 1} + Qk(x){r - 1, k}. (8.32) 

Going back to conjecture (8.21), we note that the expression for the sym-
bol {rs k} in (8.21) and (8.22) involves divisibility properties of the Pell 
polynomials. Although these are not discussed here, they are investigated in 
some detail in [9]. A key divisibility result proved in [9], for instance, is 

Pm(x)\Pn(x) if and only if m\n. (8.33) 

The polynomial expressions occurring as powers of A in (8.3) and (8.18), e.g., 
are {3, 1} and {3, 2}, and {4, 1}, {4, 2}, and {4, 3} = {4, 1}, respectively. 

9. CONCLUDING REMARKS 

Naturally the consequences of the use of matrix methods in developing com-
binatorial number-theoretic properties of Pell and Pell-Lucas polynomials are 
by no means exhausted in our brief account above. 

Quite apart from pursuing the discovery of additional formulas by the 
matrix techniques indicated, we can introduce different matrices to obtain new 
results. 

Another interesting set of problems is to derive the sum of series whose 
terms are fractional and involve products of Pell or Pell-Lucas polynomials in 
the denominator, e.g., 

f (-Dr 

Putting x = 1 in the expression and summing to infinity, we may deduce the in-
finite alternating series summation involving Pell numbers, 

r=1 rrv+1 

but enough has been said on our general theme for the moment. 
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LETTER TO THE EDITOR 

July 1, 1986 

Over the years, several articles have appeared in The Fibonacci Quarterly 
relating the Fibonacci numbers to growth patterns in plants. Recently, Roger 
V. Jeans Professor of Mathematics and research worker in biomathematics at the 
University of Quebec has written the book Mathematical Approach to Pattern and 
Form in Plant Growth (Wiley & Sons), which should interest many readers of the 
Quarterly. 

Dr. Jean addresses the mathematical problems raised by phyllotaxis9 the 
study of relative arrangements of similar parts of plants and of technical con-
cepts related to plant growth. He includes not only recent mathematical devel-
opments but also those that have appeared in specialized periodicals since 
18305 listing well over 400 references. The book is written as a textbook for 
an advanced course in plant biology and mathematics or as a reference for wor-
kers in biomathematics. Besides that, it is just plain interesting reading. 

Sincerely, 

Marjorie Bicknel1-Johnson 
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