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1. INTRODUCTION 

The ratio of the radius of a circle and a side of the inscribed regular 
decagon equals the golden ratio T. In the complex plane the spines of a regu-
lar decagon inscribed in a circle of unit radius are the vector representations 
of the complex tenth roots of -1, if the decagon is appropriately turned. These 
two observations motivate an interest in expressing the tenth roots of -1 in 
terms of the golden ratio. The roots themselves may be derived using either 
the polar representation of ~ls for it is known that they are expressible as 
gT^r/io w h e n v ±s an integer3 or they may be obtained algebraically5 since when 
5 divides n, the field of the nth roots of -1 contains /5 and hence contains T. 

2. RESUME ON THE GOLDEN RATIO 

The golden ratio is the limiting ratio of two successive Fibonacci numbers. 
This limiting ratio satisfies the quadratic equation3 

T2 - T - 1 = 0 (1) 

in which the first root 

1 + ^5 
T = — — 

is the golden ratio and the second root is 

1--/5 1 

(2) 

(3) 

see [1] . 
The idea is to introduce the quantities (2) and (3) into the expressions 

calculated below for the tenth roots of -1. 

3. THE POLAR APPROACH TO THE TENTH ROOTS OF -1 

Since -1 has unit modulus and an argument of 180° s its polar representation 
is 

-1 = cos 9n + i sin 0n (4) 

9n = 180°  + 360° n5 (5) 
with 

where n = 05 ±1, ±2S ... accounts for the periodicity of circular measure3 and 
,'2 i - -1. The tenth roots of -1 are then given by 

c o s I o + t s i n To 
which in complex rectangular form are, successively 

1986] 323 



TENTH ROOTS AND THE GOLDEN RATIO 

Z 2 , 3 , h, 5 = ± ( C O S 1 8 ° ± t S i n 1 8 ° ) ' ( 6 ) 

Z 6 , 7, 8, 9 = ± ( c O S 5 4 ° ± ^ S i l 1 5 4 ° ) ' 

each subscript denoting a different choice of algebraic sign. 
The golden ratio is introduced by expressing the trigonometric ratios in 

(6) as surds. To do this, first use the result 

sin(2 x 18°) = sin 36°  = cos(90°  - 36° ) = cos 54°  = cos(3 x 18°) (7) 

to obtain, with the respective double and triple angle formulas for the sine 
and cosine, 

2 sin 18°  cos 18°  = 4 cos318°  - 3 cos 18° . (8) 

Next, divide both sides of (8) by cos 18°  to reduce it to a quadratic equation 
in sin 18° , viz, 

4 sin218°  + 2 sin 18°  - 1 = 0 , (9) 

with positive root 

s m 18 = ; = T — . (10) 
4 2T 

Then we can write 

cos 18°  = v T ^ ^ W = ^ - ( i ) 2 - ^ ^ 

= (1 + T)/3" - T = T/3 - ~ 
2T 2 

where equation (1) has also been used. Furthermore, 

cos 54°  = sin 36°  = 2 sin 18°  cos 18°  = ~ T 

and 

(ID 

T _T 
2 sin 54°  = Vl - cos254°  = y 1 - (^-J~) = ^^~ 

According to these expressions, the tenth roots of -1 become 

(12) 

o, l 

Z 2, 3, 4, 5 = ±-|(T73~- T ± i ± ). (13) 

1 Z6, 7, 8,9 = ± 1 ^3 " T + i T), 

and they may be sketched in the Argand plane as in Figure 1. 
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• j?(Z) 

Figure 1 

Since the side of the corresponding decagon is the modulus of the differ-
ence of two successive roots, we see from the figure that the ratio alluded to 
in the Introduction is typically 

i / K i 
2 sin 18c (14) 

from (10). 

ALGEBRAIC APPROACH 

The tenth roots of -1 satisfy 

+ 1 

or, replacing Z by 5s says 

g5 + 1 0. 

(15) 

(16) 

This shows that the golden ratio is also relevant to an investigation of the 
fifth roots of -1. The golden ratio arises, for instance9 in the geometry of 
the regular five-pointed star. 

Equation (16) can be factorized to 

(5 + DC?" - e + e - 5 + l) = o, (17) 

showing that £ = -1 is a root of the quintic in (16) and confirming that 

Z = ±J^1 = ±i (18) 

are two roots of the corresponding "dectic" in (15). 
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Dividing the remaining quartic factor in (17) by £ gives 

C2 +jj~ (? +{)+ 1 = 0, (19) 

which on substituting 

n = K + j (20) 

reduces to 

n2 - n - l = o, (21) 

with roots as in (1), viz, 

1 
n1$ 2 = T, --. (22) 

From (20), we also have 

52 - n? + i = o (23) 

with roots 

t _ n ± vV - 4 n ± vVi - 3 (24) 

Inserting the appropriate values of r) given in (22), we obtain the complex 
fifth roots of -1 as 

1, K l a 2 = |(T ± iV3 - T) 
an d ' i / i x 

?3,, = i ( ~ T ± ̂ vT^- T ) , (25) 
from which required complex tenth roots follow with, for instance, 

Z = ±/£. (26) 

These square roots are found by proceeding typically as follows. Let 

a + jb = y-~(x + jV3 - T ) . (27) 

Since the right-hand side is a root of -1, we have 

a2 + Z?2 = 1. (28) 

Also, squaring both sides in (27) and equating real and imaginary parts in the 
result, we arrive at, with a little help from (1), 

a2 - b2 --I (29) 

and 

ab = V3 ~ T . (30) 

These indicate that the product of a and 2? is positive, meaning that a and b 
are together either both positive or both negative. Solving (28) and (29) 
simultaneously gives 
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I/i + 1\ = 2 + T (2 + T ) T 2 4T + 3 _ [ T 2 ( 3 - T) ] 
2V 2 J ~ 4 , , ~ , , - 4 

4T Z 4T" 
from which 

TVT 

and 

62 1 (X T\ _ 2^JU _ H ^ T l T 2 = (2-T)(l + T) = _L 
2 V 2 ; 4 4 T 2 4T 2 AT 2 

Thus, from the square root in (27)9 we obtain two of the tenth roots in (13). 
namely, 

^{(T + jV3 - T) = ±\(xVT^ + j g ) ) . (31) 

The other tenth roots in (13) can be obtained similarly from the fifth roots in 
(25). 

Of course, the same procedure outlined here is applicable to the problem of 
expressing the fifth and tenth roots of unity (i.e., +1 rather than -1), in 
terms of the golden ratio; however, this is left as an exercise for the inter-
ested reader. 
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