A FAMILY OF FIBONACCI-LIKE SEQUENCES

PETER R. J. ASVELD

Department of Computer Science, Twente University of Technology P.O. Box 217, 7500 AE Enschede, The Netherlands (Submitted June 1985)

We consider the recurrence relation

$$G_n = G_{n-1} + G_{n-2} + \sum_{j=0}^{k} \alpha_j n^j,$$

where $G_0 = G_1 = 1$, and we express G_n in terms of the Fibonacci numbers F_n and F_{n-1} , and in the parameters α_0 , ..., α_k .

For integer values of k, α_0 , ..., α_k , the relation

$$G_n = G_{n-1} + G_{n-2} + \sum_{j=0}^{k} \alpha_j n^j, \tag{1}$$

where $G_0 = G_1 = 1$, forms a difference equation that can be solved by standard methods. In this note, we provide such a solution for equations of this type, in which we treat α_0 , ..., α_k as parameters. First, the solution $G_n^{(h)}$ of the corresponding homogeneous equation equals

$$G_n^{(h)} = C_1 \phi_1^n + C_2 \phi_2^n,$$

where $\phi_1=\frac{1}{2}(1+\sqrt{5})$ and $\phi_2=\frac{1}{2}(1-\sqrt{5});$ cf. e.g., [1] and [3]. Second, as a particular solution, we try

$$G_n^{(p)} = \sum_{i=0}^k A_i n^i,$$

which yields

$$\sum_{i=0}^{k} A_{i} n^{i} - \sum_{i=0}^{k} A_{i} (n-1)^{i} - \sum_{i=0}^{k} A_{i} (n-2)^{i} - \sum_{i=0}^{k} \alpha_{i} n^{i} = 0$$

$$\sum_{i=0}^k A_i n^i - \sum_{i=0}^k \left(\sum_{\ell=0}^i A_i \binom{i}{\ell} \right) (-1)^{i-\ell} (1 + 2^{i-\ell}) n^\ell \right) - \sum_{i=0}^k \alpha_i n^i = 0.$$

For each i $(0 \le i \le k)$, we have

$$A_{i} - \sum_{m=i}^{k} \beta_{im} A_{m} - \alpha_{i} = 0,$$
 (2)

where, for $m \ge i$,

$$\beta_{im} = {m \choose i} (-1)^{m-i} (1 + 2^{m-i}).$$

From the recurrence relation (2), A_k , ..., A_0 can be computed (in that order): A_i is a linear combination of α_i , ..., α_k . However, a more explicit expression for A_i can be obtained by setting

$$A_i = -\sum_{j=i}^k \alpha_{ij} \alpha_j.$$

(The minus sign happens to be convenient in the sequel.) Then (2) implies

$$-\sum_{j=i}^{k} a_{ij} \alpha_j + \sum_{m=i}^{k} \beta_{im} \left(\sum_{\ell=m}^{k} a_{m\ell} \alpha_{\ell} \right) - \alpha_i = 0.$$

Since $\beta_{ii} = 2$, we have, for $0 \le i \le k$,

$$a_{ii} = 1$$

$$a_{ij} = -\sum_{m=i+1}^{j} \beta_{im} a_{mj}, \text{ if } j > i.$$

Hence,

$$G_n^{(F)} = -\sum_{i=0}^k \sum_{j=i}^k \alpha_{ij} \alpha_j n^i = -\sum_{j=0}^k \alpha_j \left(\sum_{i=0}^j \alpha_{ij} n^i \right).$$

Finally, we ought to determine \mathcal{C}_1 and \mathcal{C}_2 : \mathcal{G}_0 = \mathcal{G}_1 = 1 implies

$$C_1 + C_2 = 1 - G_0^{(p)}, C_1 \phi_1 + C_2 \phi_2 = 1 - G_1^{(p)}.$$

These equalities yield

$$C_{1} = ((G_{0}^{(p)} - 1)\phi_{2} + 1 - G_{1}^{(p)})(\sqrt{5})^{-1}$$

$$= ((1 - G_{0}^{(p)})\phi_{1} - G_{1}^{(p)} + G_{0}^{(p)})(\sqrt{5})^{-1},$$

$$C_{2} = ((G_{0}^{(p)} - 1)\phi_{1} + G_{1}^{(p)} - 1)(\sqrt{5})^{-1}$$

$$= -((1 - G_{0}^{(p)})\phi_{2} - G_{1}^{(p)} + G_{0}^{(p)})(\sqrt{5})^{-1},$$

$$G_{p} = (1 - G_{0}^{(p)})F_{p} + (-G_{1}^{(p)} + G_{0}^{(p)})F_{p-1} + G_{p}^{(p)}.$$

and

Summarizing, we have the following proposition.

Proposition: The solution of (1) can be expressed as

$$G_n = (1 + \Lambda_k)F_n + \lambda_k F_{n-1} - \sum_{j=0}^k \alpha_j p_j(n),$$

where Λ_k is a linear combination of α_0 , ..., α_k , λ_k is a linear combination of α_1 , ..., α_k , and for each j (0 \leq j \leq k), p_j (n) is a polynomial of degree j:

$$\Lambda_k = \sum_{j=0}^k \alpha_{0j} \alpha_j, \quad \lambda_k = \sum_{j=1}^k \left(\sum_{i=1}^j \alpha_{ij}\right) \alpha_j, \quad p_j(n) = \sum_{i=0}^j \alpha_{ij} n^i.$$

Remarks:

- (1) For $j = 0, 1, \ldots, 8$, the polynomials $p_j(n)$ are given in Table 1.
- (2) No assumptions on α_0,\ldots,α_k have been made; thus, they may be rational or real numbers as well.
- (3) Changing $G_1=1$ into $G_1=c$ only affects λ_k ; it has to be increased with c-1.

A FAMILY OF FIBONACCI-LIKE SEQUENCES

Table 1

j	$p_j(n)$
0	1
1	n+3
2	$n^2 + 6n + 13$
3	$n^3 + 9n^2 + 39n + 81$
4	$n^4 + 12n^3 + 78n^2 + 324n + 673$
5	$n^5 + 15n^4 + 130n^3 + 810n^2 + 3365n + 6993$
6	$n^6 + 18n^5 + 195n^4 + 1620n^3 + 10095n^2 + 41958n + 87193$
7	$n^7 + 21n^6 + 273n^5 + 2835n^4 + 23555n^3 + 146853n^2 + 610351n + 1268361$
8	$n^{8} + 24n^{7} + 364n^{6} + 4536n^{5} + 47110n^{4} + 391608n^{3} + 2441404n^{2} + 10146888n + 21086113$

(4) The coefficients of α_0 , α_1 , α_2 , ... in Λ_k and of α_1 , α_2 , ... in λ_k are independent of k. Thus, they give rise to two infinite sequences Λ and λ of natural numbers, as k tends to infinity, of which the first few elements are

Λ: 1, 3, 13, 81, 673, 6993, 87193, 1268361, 21086113, ..., λ: 1, 7, 49, 415, 4321, 53887, 783889, 13031935, ...

Neither of these sequences is included in [2].

ACKNOWLEDGMENT

I am indebted to Hans van Hulzen for some useful discussions.

REFERENCES

- 1. C. L. Liu. Introduction to Combinatorial Mathematics. New York: McGraw-Hill, 1968.
- 2. N.J.A. Sloane. A Handbook of Integer Sequences. New York: Academic Press, 1973.
- 3. N.N. Vorobyov. The Fibonacci Numbers. Boston, Mass.: Heath, 1963.

 $\diamondsuit \diamondsuit \diamondsuit \diamondsuit \diamondsuit$