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DEFINITIONS

The Fibonacci numbers F, and the Lucas numbers I, satisfy
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PROBLEMS PROPOSED IN THIS ISSUE

B-586 Proposed by Heinz-Jurgen Seiffert, Student, Berlin, Germany

n

Show that 5 §:E%+IE;+l_k = (n+ DF___+ (n+ F

k=0 1

B-587 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC

Let = 3 F x*/n! and z =9 Lax%nl.
d n=0 " "

n=0

Show that y” = y' +y and 2" = 2" + 2.
B-58§_ Proposed by Charles R. Wall, Trident Technical College, Charleston, SC

Find the y and z of Problem B-587 in closed form.
B-589 Proposed by Herta T. Freitag, Roanoke, VA

The number N = 0434782608695652173913 has the property that the digits of
KN are a permutation of the digits of ¥ for K =1, 2, ..., m. Determine the
largest such m.

B~-590 Proposed by Herta T. Frietag, Roanoke, VA

Generalize on Problem B-589 and describe a method for predicting the left-
most digit of KW.
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B-591 Proposed by Mihaly Bencze, Jud. Brasa, Romania

Let F(x) = 1 + Y a,x" with each q, in {0, 1}.

n=1

Prove that f(x) # 0 for all x in -1/a < a2 < l/a, where a = (1 + Jg)/Z.

SOLUTIONS

Constant Modulo 5

B-562 Proposed by Herta T. Freitag, Roanoke, VA
Let ¢, be the integer in {0, 1, 2, 3, 4} such that
en = Ly, + [1/2] = [(n - 1)/2] (mod 5),
where [x] is the greatest integer in x. Determine ¢, as a function of n.
Solution by J. Suck, Essen, Germany

¢, = 3 for all n € Z. From the very definition, we see that L, = 2, 1, 3,
4 (mod 5) for » = 0, 1, 2, 3, respectively, (mod 4). Hence

= {2 for n even
2n |13 for n odd.

But for n even,

4[5 4550 -

and for » odd,

n -1 1 n-11_n-1 n-1">
[ 2 ° 2] '[ 2 } ) ;=0

n n-11_42+ 1, n even _ \
L,, + {5} - [ 7 } = {3 +0, nodd -3 (mod3).

So,

Also solved by Paul S. Bruckman, Laszlé Cseh, L.A. G. Dresel, Piero Filipponi,
C. Georghiou, L. Kuipers, J. 2. Lee & J. S. Lee, Imre Merényi, Bob Prielipp,
Heinz-Jurgen Seiffert, and the proposer.

2 of 3 Are Multiples of 4

B-563 Proposed by Herta T. Freitag, Roanoke, VA

n
o 42 Let 5, = iz;l L,:yv1Ls; _,+ For which values of n is S, exactly divisible
y a4 -

t

Solution by J. Suck, Essen, Germany

From the definition of the Lucas numbers we see that if ¥ = 0, 1, 2, 3, 4,
5 (med 6), then L, =2, 1, 3, 0, 3, 3 (mod 4), respectively. Hence, if 7 = 1,
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2, 0 (mod 3), then L,; [, , 50220
tively. This, of course, implies that S

0 (mod 3) and S5,, = 1 otherwise.

» 3* 3 =1, 13 = 3 (mod 4), respec-
= 0 (mod 4) if and only if n = 1 or

Also solved by Paul S. Bruckman, Laszld Cseh, L.A.G. Dresel, Piero Filipponi,
C. Georghiou, L. Kuipers, J. Z. Lee & J. S. Lee, Bob Prielipp, Heinz-Jurgen
Seiffert, and the proposer.

summing [aF;]

E:Eéﬂ Proposed by Laszld Cseh, Cluj, Romania
Let a = (1 + /3)/2 and [«x] be the greatest integer in . Prove that
[aF 1 + [aF,] + -« + [aF,] = F,,, - [(n + 4&)/2].
Solution by Paul S. Bruckman, Fair Oaks, CA
First we note that aFy = 57172 (ak+1 - P4 bk(b -a))= Fiyiq -~ bk. Since

-1 < b <0, thus [aF,; ] = Fypq ~ 1, [aFop1] = Fopsns or [aFy] = Fyyq — 245
where e, is the characteristic function of the even integers.

"
Let S, = 2, [aF,]. Then
k=1

i Z. n n
Sy = g;l(E%+1 - ex) = ;§3(5%+3 = Fran) - [E} =Py - Fy - [5]

n+ 4
FHH—[ 5 ] Q.E.D.

Also solved by Piero Filipponi, C.Georghiou, L. Kuipers, J. Z. Lee & J. S. Lee,
Imre Merényi, Bob Prielipp, Heinz-Jurgen Seiffert, J. Suck, and the proposer.

Fibonacci-Pell Products Summed

B-565 Proposed by Heinz-Jurgen Seiffert, Student, Berlin, Germany

Let P, P, ... be the sequence of Pell numbers defined by P =0, P, = 1,

0® ~1?
and P, = 2P, _, + B, _, for n € {2, 3, ...}. Show that
n
9}(2_:013ka =P, ,F, +P, \F,, +BF . =P F...

Solution by Paul §. Bruckman, Fair Oaks, CA

Let R, denote the right member in the statement of the problem. Then

R, = (2P,,, + P)F, + P, (F, ., +F) + P (F . - F.)
Prvy = 2B0F, 43
after simplification, this reduces to
Rn = 3(Pn+an + Pnanul)“ (1)
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Therefore,

AR, = Ryyy = B= 30, ,F 0 = P Fy Y PP, — B L)
= 3{(2Pw+l tEDF g - By B (Fyy ) - P%F%+1}’
which reduces to
AR, = 9P 1y 2

On the other hand, let 5, denote the left member in the statement of the prob-
lem. Clearly,

AS, = 9P, \F, ... (3)

Since AK, = AS,, this implies that

B, =8, +c,n=0,1, 2, ..., (4)

n

for some constant ¢ (independent of n). Since P, = F0 = 0, thus

B, =0 and S, = 9P0F0 = 0.
Setting n = 0 in (4), we find that 0 = R, = 5, + ¢ = ¢, i.e., ¢ = 0. Therefore,
R, = 85, for all n. Q.E.D. (5)

Also solved by L.A.G. Dresel, C. Georghiou, L. Kuipers, J. Z. Lee& J. S. Lee,
Heinz-Jurgen Seiffert, and the proposer.

Lucas-Pell Products Summed

B-566 Proposed by Heinz-Jurgen Seiffert, Berlin, Germany

Let P, be as in B-565. Show that

n+l n+2 nn-1 n-1"n+1

n
92 PLy =P L, +P L +P L -P L - 6.
k=0

Solution by Paul S. Bruckman, Fair Oaks, CA

The proof is similar to that of B-565. Using the same notation, we find,
as before, that

AR, = 9P 1L, = LSy, )
and
Rn=8n+c,7’l=0, 1, 2, ..., (2)

for some constant ¢ (independent of #).

Also, however, we have the following relation, which differs from (1) in the
solution of B-565:

R, = 3(P,,,L, + 2L ,) - 6. (3)

n+1
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As before, 5, = 9P,L, = 0; also, using (3), Ry =3(1=2+0°1) -6 =0. Set-
ting » = 0 in (2), as before, we find that ¢ = 0. Thus,

R_ =5, for all n. Q.E.D. (4)

"

Also solved by L.A. G. Dresel, C. Georghiou, L. Kuipers, J. Z. Lee& J. S. Lee,
J. Suck, and the proposer.

Relatives of Hermite Polynomials

B-567 Proposed by P. Rubio, Dragados Y Construcciones, Madrid, Spain

Let ag = a; =1 and ay4; = a, + na,.; for n in 2+ = {1, 2, ...}. Find a
simple formula for

- %
G(x) = E ka.

k=0
Solution by L.A. G. Dresel, Reading. England
Putting 4, = a;/k!, we have
G(x) = } Ak,
k=0

where 4, = A, =1 and (n + 1)4,,, =4, + A, _y forn =1, 2, ... . It follows
that the series for G(x) is convergent and differentiable, and

% = éo(k + DAy 2k =4 + k}?l(Ak + Ay _dxk = kE?O(Akxk + Akt
= (1 + x)G.
Since G(0) = 1, we can integrate the differential equation for G to obtain
G(x) = ex+%xi

Also solved by Duane Broline, Paul S. Bruckman, Odoardo Brugia & Piero Filipponi,
Dario Castellanos, Laszld Cseh, Alberto Facchini, J. Foster, C. Georghiou, L.
Kuipers, J. Z. Lee & J. S. Lee, Imre Merényi, Heinz-Jurgen Seiffert, J. Suck,
David Zeitlin, and the proposer.

Editorial Note: Castellanos and Zeitlin pointed out that g, = Z_M/Zian(—i//E),
where the H, are the Hermite polynomials. Bruckman, Seiffert, and Zeitlin gave
the explicit formula:

(n/2]
a =nt ¥ (1/2%m - 2k) 1K),

7 k=0

40606
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