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1. INTRODUCTION 

As introduced by Golomb in [l]s a powerful number n is a positive integer 
which has no prime appearing to the first power in its canonical prime decom-
position; i.e., if a prime p divides n, then p2 divides n. If n and m are 
powerful numbers, then n - m is said to be a proper difference of powerful num-
bers if g.Cod. (n, m) = 1. Golomb [1] conjectured that there are infinitely 
many integers which are not proper differences of powerful numbers. This was 
disproved by McDaniel in [3], wherein he gave an existence proof for the fact 
that every nonzero integer is representable in infinitely many ways as a proper 
difference of two powerful numbers. We provided a simple proof of this result 
plus an effective algorithm for finding such representations in [4]. However, 
in both our proof and McDaniel ?s proof one of the powerful numbers in such a 
representation is always a perfect square, except possibly when n = 2 (mod 4). 
Recently, Vanden Enyden [6] proved that also in the n = 2 (mod 4) case, one of 
the powerful numbers is always a square. We established in [4] that every even 
integer is representable in infinitely many ways as a proper nonsquare differ-
ence of powerfuls; i.e., as a proper difference of two powerful numbers neither 
of which is a perfect square. At this time, the only odd integer known to have 
such a representation is the integer 1 (see [7]). It is the purpose of this 
paper to complete the task; viz., to prove that every odd integer greater than 
1 (hence every integer) is a proper nonsquare difference of powerfuls, and to 
provide an algorithm for finding such representations. Therefore, this paper 
establishes the fact that every nonzero integer is representable in infinitely 
many ways as a proper difference of two powerful numbers where either one of 
the powerful numbers is a perfect square and the other is not, or neither one 
of them is a perfect square., 

For other work done on powerful numbers we refer the reader to our list of 
references, 

2. NONSQUARE POWERFUL NUMBERS 

To prove our main result, we will need the following lemma, which we state 
without proof since it is immediate from the binomial theorem. 

Lemma: If B is an integer which is not a perfect square and (T + UVB)Z = Tt + 
U^B, then 

?i = ZQky-?kU2kBk and U, - £ (?Ji , ) ^ ^ V * "V= -1, 
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where ( ) denotes the binomial coefficient* 

We are now in a position to prove the main result. 

Theorem: Every nonzero integer is representable in infinitely many ways as a 
proper difference of two powerful numbers neither of which is a perfect square. 

Proof: For the case where n is even see [4], and for the case where n = 1 see 
[7]» This leaves the case where n ) 1 is odd. We break the proof down into 
two parts. We note that it suffices to prove the result for either n or -n. 

Case (i): n t 0 (mod 5) 

Let D = rs, where 

v = (n2 - In + 5)/4 and s = (n2 + In + 5)/4. 

Let T = (n2 + 3)/4, then T2 - D = -1. If (51 + V^)* = (^ + ^>/S), then 

Tl " ̂  = ±le 

Therefore, 

±n = nCZ7? - ZW?) = sF? - p ^ , 
where 

£ . = Ti + s ^ and Fi = ^ + P ^ . 

Now we show that, for an appropriate choice of i, we can achieve E^ E 0 (mod p) 
and Fi E 0 (mod s) . To see this, we invoke the Lemma to get 

Et E ^ + siT1'1 (mod p) . 

Since n t 0 (mod 5 ) , p and s are relatively prime, so we may choose 

i E -^(s)" 1 (mod r) 

which guarantees that Z?̂  E 0 (mod p) . Similarly, by choosing 

i E -y(p)"1 (mod s) 

we guarantee F^ E 0 (mod s ) . 
In order to complete Case (i), it remains to show that Ei and Fi are rela-

tively prime. Suppose that there is a prime p such that: 

Ei = Ti + s ^ = p* (1) 

for some integer t9 and 

2^ = Tt + rUi = pw (2). 

for some integer u. Multiplying (1) by T± and (2) by st/^, then subtracting, we 
get 

±1 = T\ - rsUl = p{tTi - suU^ 

a contradiction. 
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Case (ii): n = 0 (mod 5) 

Let D = n2 + 1, T = n, U = -1, and (T + f/v/D)i = Ti + ^VS. Let Ai = Ti + 
t/̂Z? and B^ = T^ + U^ . Our plan of attack for this case is to show that for an 
appropriate choice of i we get A\ - B2D = n2 with (Ai ± n) 12 being powerful * 
First we observe that if Bi E 0 (mod 2D) and g.c.d. (̂ ^ n) = 1, then (^ ± n)/2 
are powerful. We prove g.c.d. (At, n) = 1 by contradiction. If there is a 
prime p such that A± = T± + UiD E 0 (mod p) and n E 0 (mod p) 5 then T^ + U^ E 0 
(mod p). Therefore, 

±1 = 51? - ^2D E 21? - U2 E 0 (mod p), 

a contradiction. Now, by choosing i E n (mod 2Z?) » we get by the Lemma that: 

Bi = Ti + ^ E Tf - i^"1 E 0 (mod 2D). 

Hence, we have shown that (Ai ± n) 12 are powerful. It remains to show that 
neither of these is a perfect square. To do this, we use the following fact. 
Since n E 0 (mod 5), D must contain, in its prime decomposition, a prime p > 2 
to an odd exponent; i.e. , D 4" 2d2 for any integer d* 

We observe that A\ - n2 = B\D = 25ef2, where e is odd. Therefore, which-
ever of (Ai ± ri)l2 is even cannot be a perfect square. It remains to show that 
(Ai + n) t 0 (mod 4p) and (Ai - n) ? 0 (mod 4p); i.e., whichever of (A i ± n)/2 
is odd cannot be a perfect square, since it contains the odd power of p. 

Suppose Ai + n E 0 (mod 4p) . Therefore, 2^ + Z/̂Z) + n E 0 (mod 4p), which 
implies 

Ti E nz E -n (mod p) . 

Hence, n1'"" E ~-l E n (mod p) , which implies 

<£ E 3 E n (mod 4). 

Now, by the Lemma, 2 ^ = 1 (mod 4) and U^ = 3 (mod 4). Thus, 

O E ^ + ^ Z J + n E 1 + 6 + 3 (mod 4), 

a contradiction. 
Finally, assume -4̂  - n E 0 (mod 4p) . Therefore, 2^ + UiD - n E 0 (mod 4p), 

which implies T^ E n^ E n (mod p), and so i E 1 E n (mod 4). Hence, 

0 E Ti + u-iD - n = l + 6 - l (mod 4 ) , 

a contradiction which secures the Theorem. 

We note that the proof of the Theorem yields an effective algorithm, via the 
choice of i, for Infinitely many representations of a given odd integer as a 
proper nonsquare difference of powerful numbers. The following examples Illus-
trate the process. 

Example 1: Let i = i (moa "f » ud /' <- < - V -- 7\ + U^IO. Thus, 

3 = 2(27i + Si/^)2 *• -fT, -̂  ?/ * 

with IZ7,: + 2 ^ E 0 (mod 5) i, * ;/ , ' ""• In particular, If i = 1, then 
3 = 27 - 53* 
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Example 2: Let i = 5 (mod 52) and (5 - y/IE)* = Ti + ^A/26. Then 

(̂  + 2 6 ^ ) 2 - 26(^ + ^ ) 2 = 25 

with (^ + 26£/̂  ± 5)/2 nonsquare powerful numbers. In particular, if £ = 5, 
then 5 = 72 - 133 - 27 • 292. 
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