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INTRODUCTION 

A well-known theorem of Lagrange [4, p. 302] states that every natural num-
ber can be represented as a sum of at most four squares. For each integer, k9 

such that 1 ̂  k ^ 4,let S% be the set of natural numbers, n, such that ( J is 

a sum of k (but not fewer) squares. We show that S1 is empty, S2 = {l, 3}, 
while S3 and S^ are both infinite. 

PRELIMINARIES 

Let p denote a prime. 

Definition 1: op(n) = k if pk\n, p \ n 

D e f i n i t i o n 2: tp(n) = £ ai i f n = • £ ^ P ' S wi th 0 < a^ < p fo r each -£. 
i = 0 i = 0 

£p(a&) = 0 p ( a ) + 0 p ( £ ) (1) 

n - tp(n) 
Opinl) = _ x (2) 

•(©. 
tp(7<) + kp(n - 20 - -tp(n) 

(3) 
P " 1 

tp(apj) = tp(a) for a l l a, j (4) 

0 2((2;)) -*2c„) (5) 

n ^ a 2 + £ 2 + £2 i f f n = 22/c(8w + 7) wi th k> 0, m> 0 (6) 

n ^ a2 + b2 iff there is a prime, p, such that 

p 'E 3 (mod 4) and op(n) is odd. (7) 

Remarks: (1) follows from Definition 1. (2) is [2, p. 131, Problem 7]. (3) 
follows from (1) and (2). (4) follows from Definition 2. (5) follows from 
(3) and (4). (6) is stated in [4, p. 311]. (7) is [4, p. 299, Theorem 366]. 
t2(n) is denoted #x(n) in [5]. 
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REPRESENTING (2n) AS A SUM OF SQUARES 

THE MAIN THEOREMS 

Theorem 1: If n ^ 1, 3, then there is a prime, p, such that p = 3 (mod 4) and 
n < p < 2n. 

Proof: Breusch [1] proved the conclusion for n ^ 7. If n = 2, then p = 3; if 
4 < n < 6, then p = 7. 

Theorem 2: ^ is empty; S2 = {1, 3}. 

Proof: If 2 < n < p < 2rc, then 2n < 2p , so op(( j) = 1. Therefore9 (7) and 
Theorem 1 imply 5X u S2 C {1, 3}. Since \\n// 

(J) = I2 + I2, arid-(|) = 4 2 + 2 2 , 

the conclusion now follows. 

Remark: That S± is empty also follows from the theorem of P. Erdos [3], which 

states that f -, J is not a power if k > 3. 

Definition 3: If n = 2ktfz, ft: > 0, m odd, then /(n) is the least positive resi-
due of m (mod 8) . 

Lemma 1: If m is odd, then f(m) = w (mod 8). 

Proof: The proof follows from the hypothesis and Definition 3. 

Lemma 2: If f(a) = f(b) (mod 8), then f(a) = /(fc) . 

Proof: The proof follows from the hypothesis and Definition 3. 

Lemma 3: f(ab) = f(a)f(b) (mod 8). 

Proof: Let a = 2°js b = 2dk, with o > 0, d > 0, jfc odd. Lemma 1 implies 

fUk) = jfe = fU)f(k) (mod 8). 

Now /(afr) = f(2°+djk) = /(jfc), while f(a)f(b) = f(j)f(k)s so 

/(ofc) = f(a)f(b) (mod 8). 

Lemma k: If /(2>) = 1, then f(ab) = /(a). 

Proof: The proof follows from the hypothesis and Lemmas 3 and 2. 

Lemma 5*. f(n2) = 1. 

Proof: If n = 2*m, fc > 0, m odd, then f(n2) = f(22km2) = j(m2)s Now, Lemma 1 
implies /(m2) = m2 = 1 (mod 8). But /(l)= 1, so we have /(n2) = /(l) (mod 8). 
Now2 Lemma 2 implies f(n2) =/(!)=!. 

Lemma 6: f((2^)) = f((2n)!) 

Proof: The proof follows from Lemmas 4 and 5, since (Jin) ! = ( n)(n!)2. 
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REPRESENTING \^j AS A SUM OF SQUARES 

Definition k: Let gin) = f(nl). 

Table 1 lists g!(n) and t2(n) for each n such that 1 < n < 200. 

Table 1 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
81 
91 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

gin) 

1 
1 
3 
3 
7 
5 
3 
3 
3 
7 
5 
7 
3 
5 
3 
3 
3 
3 
1 
5 
1 
3 
5 
7 
7 
3 
1 
7 
3 
5 
3 
3 
3 
3 
1 
1 
5 
7 
1 
5 
5 
1 
3 
1 
5 
3 
5 
7 
7 
7 

V«) 
1 
1 
2 
1 
2 
2 
3 
1 
2 
2 
3 
2 
3 
3 
4 
1 
2 
2 
3 
2 
3 
3 
4 
2 
3 
3 
4 
3 
4 
4 
5 
1 
2 
2 
3 
2 
3 
3 
4 
2 
3 
3 
4 
3 
4 
4 
5 
2 
3 
3 

w 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

gin) 

5 
1 
5 
7 
1 
7 
7 
3 
1 
7 
3 
5 
3 
3 
3 
3 
1 
1 
5 
7 
1 
1 
1 
5 
7 
5 
1 
7 
1 
5 
5 
5 
7 
3 
7 
5 
3 
1 
1 
5 
7 
1 
5 
3 
5 
7 
7 
7 
5 
5 

t2(n) 

4 
3 
4 
4 
5 
3 
4 
4 
5 
4 
5 
5 
6 
1 
2 
2 
3 
2 
3 
3 
4 
2 
3 
3 
4 
3 
4 
4 
5 
2 
3 
3 
4 
3 
4 
4 
5 
3 
4 
4 
5 
4 
5 
5 
6 
2 
3 
3 
4 
3 

n 

101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 

gin) 

1 
3 
5 
1 
1 
5 
7 
5 
1 
7 
1 
7 
7 
7 
5 
1 
5 
7 
1 
7 
7 
3 
1 
7 
3 
5 
3 
3 
3 
3 
1 
1 
5 
7 
1 
1 
1 
5 
7 
5 
1 
7 
1 
1 
1 
1 
3 
7 
3 
1 

Vw> 
4 
4 
5 
3 
4 
4 
5 
4 
5 
5 
6 
3 
4 
4 
5 
4 
5 
5 
7 
4 
5 
5 
6 
5 
6 
6 
7 
1 
2 
2 
3 
2 
3 
3 
4 
2 
3 
3 
4 
3 
4 
4 
5 
2 
3 
3 
4 i 
3 
4 
4 

n 

151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 

I 190 
! 191 
192 
193 
194 
195 
196 
197 
198 
199 
200 

gin) 

1 
5 
5 
1 
3 
5 
1 
7 
1 
5 
5 
5 
7 
7 
3 
1 
7 
3 
3 
7 
5 
7 
3 
5 
3 
1 
1 
1 
3 
7 
3 
1 
7 
1 
1 
5 
7 
1 
5 
3 
5 
7 
7 
7 
5 
5 
1 
3 
5 
5 

t2(n) 

5 
3 
4 
4 
5 
4 
5 
5 
6 
2 
3 
3 
4 
3 
4 
4 
5 
3 
4 
4 
5 
4 
5 
5 
6 
3 
4 
4 
5 
4 
5 
5 
6 
4 
5 
5 
6 
5 
6 
6 
7 
2 
3 
3 
4 
3 
4 
4 
5 
3 
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REPRESENTING (̂ n) AS A SUM OF SQUARES 

Theorem 3: ( J + a2 + b2 + c2 iff t2(n) is even and g(2n) = 7. 

Proof: The proof follows from (5), (6), Lemma 6, and Definition 4. 

Theorem 4: Let k be a nonnegative integer. Then 

(a) 0r(8fc) =#(4k); (b) g(8k + 2) = #(4k + 1); 

(c) #(8k + 4) E 3#(4k + 2) (mod 8); (d) g(8k + 6) = 8 - #(4k + 3). 

Proof of (a): By Definition 4 and Lemma 4, it suffices to show that 

f(WM)= 1 for al1 k > °-
We proceed by induction on k. The statement is trivially true for k = 0. Now 

/(8(k + 1)!)\ /(8k + 8)!)\ = J (8k + 8)i(4k)i(8k)!\ 
J\(4(k + 1)!)/ J\(4k + 4)!)/ J\(8k)!(4k + 4)!(4k)!/ 

= r((8k + 8)!(4k)i\ 
J\(8k)!(4k + 4)!/ 

by i n d u c t i o n h y p o t h e s i s and Lemma 4 . But 

J(8k + 8 ) ! ( 4 k ) i \ 
J l ( 8 k ) ! ( 4 k + 4 ) ! / 

= fY<8fe + 8) (8k + 7) (8k + 6)(8k + 5) (8k + 4) (8k + 3) (8k + 2) (8k + 1 ) \ 
J \ (4k + 4) (4k + 3) (4k + 2) (4k + 1) / 

= f(2h(8k + 7)(8k + 5)(8k + 3)(8k + 1) = / ( 7 • 5 • 3 • 1) = / ( 1 0 5 ) = 1. 

Parts (b), (c), and (d) may be proved in similar fashion. 

' g(m) if 7W E 1 (mod 4), 
Theorem 5: g(2m) = < 

".8 - g(m) if 77? E 3 (mod 4). 

Proof: The proof follows from Theorem 4. 

Theorem 6: If either (i) 7?? E 1 (mod 4) and g(m) = 55 or (ii) 777 E -1 (mod 4) 
and g(m) = 3, then g(2m) = 5 and g(km) = 7. 

Proof: The hypothesis and Theorem 5 imply g(2m) = 5. Now m = 4r ± 1, so 

g(^m) = g(k(kv ± 1)) = g(8(2v) ± 4) = 3^(4(2r),± 2) = 3#(2(4r ± 1)), 

3̂ (2777) E 3 • 5 E 7 (mod 8), 

by Theorem 4(c). Therefore, g(km) = 7* 

Theorem 7' If m is odd and g(2m) = 5, then g(2km) = 7 for all k > 2. 

Proof: (Induction on k.) By Theorem 6S the statement is true for k = 2. If 
k > 2, then g(2km) = gr (8 (2^ ~ 3w)) = ̂ (4(2fe~3777)) = ̂ (2/c_17??) = 75 by Theorem 4(a) 
and the induction hypothesis. 
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REPRESENTING ( n) AS A SUM OF SQUARES 

Theorem 8: S3 is infinite, that is, there exist infinitely many n such that 

Proof: If m > 2, then t2(22m~1~- 1) = 2m - 1, and 22m~1 - 1 > 3, so that Theo-
rems 2 and 3 imply that 2 2 m _ 1 - 1 belongs to S3. 

Theorem 3: 6\ is infinite, that is, there exist infinitely many n such that 

Proof: By Theorems 3, 6, and 7, it suffices to find an 77? such that (i) t2(m) 
is even, and either (ii) m E 1 (mod 4) and gim) = 5, or (iii) m E 3 (mod 4) and 
#(/77) = 3- Examining Table 1, we find the following such m < 200: 

77? e {3, 15, 43, 53, 63, 147, 153, 175, 189}. 

Concluding Remarks: Let dn be the asymptotic density of Sn9 where 1 < n < 4. 
Since S1uS2 is finite, by Theorem 2, we have d1 = d2 = 0, so that d3 + dh - 1. 
If n is a randomly chosen natural number, let A be the event that t2(n) is 
even; let B be the event that g(2n) = 7. It is easily seen that Vr(A) = ̂ . 
Now dh = Pr(n e 54) = ¥r(A n B) < ?r(A) = h* Therefore, d3 > h* Table 1 sug-
gests that A and B are independent, and that Pr(5) = %. Therefore, 

Conjecture: c^ = 1/8, d3 = 7/8. 
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