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INTRODUCTION

A well-known theorem of Lagrange [4, p. 302] states that every natural num-
ber can be represented as a sum of at most four squares. For each integer, k,
such that 1 < k < 4, let S; be the set of natural numbers, #n, such that (3?) is

a sum of k (but not fewer) squares. We show that 5, is empty, S, = {1, 3},
while S; and 5, are both infinite.

PRELIMINARIES

Let p denote a prime.

Definition 1: 0p(n) k if pk|n, Pk+lk n

r r
Definition 2: t,(n) = ¥ a; if n = 3 a,p?, with 0 < a; <p for each .
i=o i=0

op(ab) = op(a) + 0,(b) (1)
n - tp(?’l)
Op(n!) = ‘—‘p—_—l—‘ (2)

tp(k) + kp(n - k) - tp(n)

op<<Z)>~ = (3)

tp(apd) = t,(a) for all a, J (4)
02<(ff)> = t, () (5)
n#ta+b>+c?iff n=2%Gm+7) withk=>0,m>0 (6)

n # a® + b* iff there is a prime, p, such that

p = 3 (mod 4) and o,(n) is odd. (7))
Remarks: (1) follows from Definition 1. (2) is [2, p. 131, Problem 7]. (3)
follows from (1) and (2). (4) follows from Definition 2. (5) follows from

(3) and (4). (6) is stated in [4, p. 311]. (7) is [4, p. 299, Theorem 366].
t,(n) is denoted #,(n) in [5].
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REPRESENTING (n

) AS A SUM OF SQUARES

THE MAIN THEOREMS

Theorem 1: If » # 1, 3, then there is a prime, p, such that p = 3 (mod 4) and
n<p<2n.

Proof: Breusch [1] proved the conclusion for n 2 7. If n = 2, then p = 3; if
4 <n<6, thenp = 7.

Theorem 2: S, is empty; S, = {1, 3}.

Proof: 1If 2 <n<p < 2n, then 2n < 2p, so Op((i?)) = 1. Therefore, (7) and
Theorem 1 imply S; u S, € {1, 3}. Since

) - ve it () e
(l =1° 4+ 17, and 3) = 4 + 22,
the conclusion now follows.

Remark: That S; is empty also follows from the theorem of P. Erdos [3], which

states that (Z) is not a power if k > 3.

Definition 3: If n = 2%m, k > 0, m odd, then Ff(n) is the least positive resi-
due of m (mod 8).

Lemma 1: If m is odd, then f(m) = m (mod 8).

Proof: The proof follows from the hypothesis and Definition 3.
Lemma 2: If f(a) = f(b) (mod 8), then f(a) = f(b).

Proof: The proof follows from the hypothesis and Definition 3.
Lemma 3: f(ab) = f(a)f(b) (mod 8).

Proof: Let a

2°5, b = 2%, with ¢ > 0, d > 0, jk odd. Lemma 1 implies

i

FGk) = jk = F(F)F(K) (mod 8).
Now f(ab) = f(2°*%jk) = F(jk), while F(a)f(b) = f(H)FK), so
flab) = f(a)f () (mod 8).
Lemma 4: If f(b) = 1, then f(ab) = f(a).
Proof: The proof follows from the hypothesis and Lemmas 3 and 2.
Lemma 5: f(»n?) = 1.
Proof: 1If n = 2%m, k > 0, m odd, then f(n?) = £(2%*n?) = f(m*). Now, Lemma 1
implies f(m®) = m? = 1 (mod 8). But f(1)=1, so we have Ff(n?) = F(1) (mod 8).
Now, Lemma 2 implies f(n2) = f(1) = 1.
Lemma 6 f((ff))= (2.

Proof: The proof follows from Lemmas 4 and 5, since (2n)! = (37)(n!}2.
\ %
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Definition 4:

Let g(n) = f(n!).

REPRESENTING (3?) AS A SUM OF SQUARES

Table 1 lists g/(n) and t,(n) for each n such that 1 < n < 200.

Table 1

n g(n) t,(n) n g(n) t,(n) n g(n) t,(n) n gn) t,(n)
1 1 1 51 5 4 101 1 4 151 7 5
2 1 1 52 1 3 102 3 4 152 5 3
3 3 2 53 5 4 103 5 5 153 5 4
4 3 1 54 7 4 104 1 3 154 1 4
5 7 2 55 1 5 105 1 4 155 3 5
6 5 2 56 7 3 106 5 4 156 5 4
7 3 3 57 7 4 107 7 5 157 1 5
8 3 1 58 3 4 108 5 4 158 7 5
9 3 2 59 1 5 109 1 5 159 1 6

10 7 2 60 7 4 110 7 5 160 5 2

11 5 3 61 3 5 111 1 6 161 5 3

12 7 2 62 5 5 112 7 3 162 5 3

13 3 3 63 3 6 113 7 4 163 7 4

14 5 3 64 3 1 114 7 4 164 7 3

15 3 4 65 3 2 115 5 5 165 3 4

16 3 1 66 3 2 116 1 4 166 1 4

17 3 2 67 1 3 117 5 5 167 7 5

81 3 2 68 1 2 118 7 5 168 3 3

91 1 3 69 5 3 119 1 7 169 3 4

20 5 2 70 7 3 120 7 4 170 7 4

21 1 3 71 1 4 121 7 5 171 5 5

22 3 3 72 1 2 122 3 5 172 7 4

23 5 4 73 1 3 123 1 6 173 3 5

24 7 2 74 5 3 124 7 5 174 5 5

25 7 3 75 7 4 125 3 6 175 3 6

26 3 3 76 5 3 126 5 6 176 1 3

27 1 4 77 1 4 127 3 7 177 1 4

28 7 3 78 7 4 128 3 1 178 1 4

29 3 4 79 1 5 129 3 2 179 3 5

30 5 4 80 5 2 130 3 2 180 7 4

31 3 5 81 5 3 131 1 3 181 3 5

32 3 1 82 5 3 132 1 2 182 1 5

33 3 2 83 7 4 133 5 3 183 7 6

34 3 2 84 3 3 134 7 3 184 1 4

35 1 3 85 7 4 135 1 4 185 1 5

36 1 2 86 5 4 136 1 2 186 5 5

37 5 3 87 3 5 137 1 3 187 7 6

38 7 3 88 1 3 138 5 3 188 1 5

39 1 4 89 1 4 139 7 4 189 5 6

40 5 2 90 5 4 140 5 3 190 3 6

41 5 3 91 7 5 141 1 4 191 5 7

42 1 3 92 1 4 142 7 4 192 7 2

43 3 4 93 5 5 143 1 5 193 7 3

44 1 3 94 3 5 144 1 2 194 7 3

45 5 4 95 5 6 145 1 3 195 5 4

46 3 4 96 7 2 146 1 3 196 5 3

47 5 5 97 7 3 147 3 4 197 1 4

48 7 2 98 7 3 148 7 3 198 3 4

49 7 3 99 5 4 149 3 4 199 5 5

50 7 3 100 5 3 150 1 4 200 5 3
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REPRESENTING (if) AS A SUM OF SQUARES

Theorem 3: (%?) # a®> + b? + % iff t,(n) is even and g(2n) = 7.
Proof: The proof follows from (5), (6), Lemma 6, and Definition 4.

Theorem 4: Let k be a nonnegative integer. Then

I

(@) g(8k) = g(4k); (b) g(8k + 2) = g(4k + 1);

(c) g(Bk + 4) = 3g(4k + 2) (mod 8); (d) g(8k + 6)

8 - g4k + 3).

Proof of (a): By Definition 4 and Lemma 4, it suffices to show that

(8k) 1)
f((Ak)!)

We proceed by induction on k. The statement is trivially true for kK = 0. Now

Bk + 1Y)\ _ ((8k + 8)1)\ _ ((8k + 8)!(4k) ! (8K)!
f((4(k + 1):)) = f(<4k ¥ 4)!)) = f((gk)z(ak + 4)!(4k)!)

) =1 for all k 2 0.

(8K + 8)!(4k)!
B f((sk)!(4k + 4)!)

by induction hypothesis and Lemma 4. But

(8% + 8) 1 (4k) !
f((8k)!(4k + 4)!)

_ f((sk + 8)(8k + 7)(8k + 6)(8k + 5)(8k + 4)(8k + 3)(8k + 2)(8k + 1))
- (4k + &) (4k + 3) (4k + 2) (bk + 1)

= f(2"(8k + 7)(8k + 5)(8k + 3)(8k + 1) = f(7+5+3+1) = £(105) = 1.

Parts (b), (c), and (d) may be proved in similar fashion.

11

g (m) if m 1 (mod 4),
Theorem 5: g(2m) =

8 - g(m) if m = 3 (mod 4).

Proof: The proof follows from Theorem 4.

)

Theorem 6: If either (i) m 1 (mod 4) and g(m) = 5, or (ii) m = -1 (mod 4)
and g(m) = 3, then g(2m) = 5 and g(4m) = 7.

Proof: The hypothesis and Theorem 5 imply g(2m) = 5. Nowm = 4r * 1, so
g(am) = g(4(br £ 1)) = g(8(2r) * 4) = 3g(4(2r) * 2) = 3g(2(4r £ 1)),
3g(2m) = 35 = 7 (mod 8),

by Theorem 4(c). Therefore, g(4m) = 7.

Theorem 7: If m is odd and g(2m) = 5, then g(2*m) = 7 for all k > 2.

Proof: (Induction on k.) By Theorem 6, the statement is true for k = 2. If

k > 2, then g(ka) = g(8(2k_3m)) = g(é(Zk'am)) = g(2k_lm) = 7, by Theorem 4(a)
and the induction hypothesis.
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REPRESENT ING (3?) AS A SUM OF SQUARES

Theorem 8: S, is infinite, that is, there exist infinitely many n such that

(2”> =a? + p? + c2.
14

Proof: 1If m =2 2, then t2(22m_l-l) =2m - 1, and 2°""1 - 1 > 3, so that Theo-
rems 2 and 3 imply that 22"°! - 1 belongs to Sy

Theorem 9: 5, is infinite, that is, there exist infinitely many # such that
(") #a® + 57 + c2
n
Proof: By Theorems 3, 6, and 7, it suffices to find an m such that (i) t,(m)
is even, and either (ii) m = 1 (mod 4) and g(m) = 5, or (iii) m = 3 (mod 4) and

g(m) = 3. Examining Table 1, we find the following such m < 200:

m e {3, 15, 43, 53, 63, 147, 153, 175, 189}.

Concluding Remarks: Let dn be the asymptotic density of S,, where 1 < n < 4.
Since S,uU S, is finite, by Theorem 2, we have dy=d, = 0, so that dy +d, =1

If n is a randomly chosen natural number, let 4 be the event that %,(n) is
even; let B be the event that g(2n) = 7. It is easily seen that Pr(4) = %.

Now dy, = Pr(n € §,) = Pr(4 n B) < Pr(4) = %. Therefore, dy 2 %. Table 1 sug-
gests that 4 and B are independent, and that Pr(B) = %. Therefore,

Conjecture: d, = 1/8, d; = 7/8.
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