JOSEPH W. CREELY

31 Chatham Place, Vincentown, NJ 08088

(Submitted July 1985)

1. INTRODUCTION

Let D be an operator defined on a pair of integers

$$A = (a_1, a_2), a_1 \ge a_2 > 0,$$

by

$$D(\alpha_{1}, \alpha_{2}) = \begin{cases} (\alpha_{2}, \alpha_{1} - \alpha_{2}), & 2\alpha_{2} \geq \alpha_{1}, \\ (\alpha_{1} - \alpha_{2}, \alpha_{2}), & \alpha_{1} \geq 2\alpha_{2}. \end{cases}$$
(1.1)

Given any initial pair A_0 , we obtain a sequence $\{A_n\}$ with $A_n = DA_{n-1}$, n > 0. This sequence is called the "two-number game."

<u>Definition 1.1</u>: The length of the sequence $\{A_n\}$, denoted L(A), is n such that $\overline{A_n} = (\alpha', 0)$ for some integer $\alpha' > 0$.

<u>Definition 1.2</u>: The complement of A is $CA = (a_1, a_1 - a_2)$.

It follows that $C^2A = A$ and

$$DCA = DA$$
. (1.2)

The effect of D on (α_1, α_2) is to reduce α_1 by α_2 and then arrange $\alpha_1 - \alpha_2$ and α_2 in order of decreasing magnitude to form $D(\alpha_1, \alpha_2)$.

The number pair (a_1, a_2) may be replaced by a rectangle (a_1, a_2) of sides a_1 and a_2 . In such a case, $D(a_1, a_2)$, $C(a_1, a_2)$, and $L(a_1, a_2)$ may be defined as above, but by replacing the comma with a dot. $D(a_1, a_2)$ and $C(a_1, a_2)$ are then rectangles. The length $L(a_1, a_2)$ is equal to the number of squares obtained by removing the largest square (a_1, a_2) from an end of (a_1, a_2) , then the largest square from an end of the remaining rectangle, and so on, until no squares remain. Therefore,

$$L(\alpha_1, \alpha_2) = L(\alpha_1 \cdot \alpha_2). \tag{1.3}$$

For example,

$$(5.3) = (3.3) + (3.2) = (3.3) + (2.2) + (2.1)$$

= $(3.3) + (2.2) + (1.1) + (1.1)$

from which L(5.3) = 4. See Figure 1 on page 175.

Replace (a_1, a_2) by the vector $A = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$, and write D in matrix form:

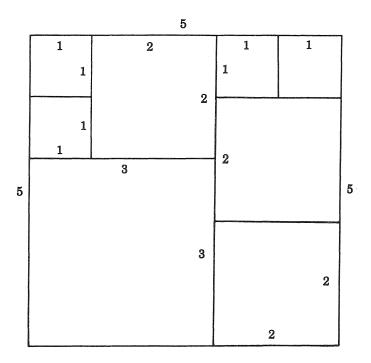


FIGURE 1. L(5.3) = L(5.2) = 4, C(5.3) = (5.2)

$$DA = \begin{cases} \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} A, & 2\alpha_2 \ge \alpha_1, \\ \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} A, & \alpha_1 \ge 2\alpha_2. \end{cases}$$
 (1.4)

Then DkA = kDA for k > 0, and

$$L(kA) = L(A). (1.5)$$

It follows from the definition that

$$L\binom{\alpha_1 + n\alpha_2}{\alpha_2} = n + L\binom{\alpha_1}{\alpha_2}, \ n > 0.$$
 (1.6)

Choose c such that $a_2 \mid (a_1 - c)$ and $a_1 > a_2 > c > 0$. Then,

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} \frac{(\alpha_1 - c)}{\alpha_2} & \alpha_2 + c \\ & \alpha_2 \end{pmatrix},$$

and from (1.6),

$$L\binom{a_1}{a_2} = \frac{a_1 - c}{a_2} + L\binom{a_2}{c}. \tag{1.7}$$

1987]

Now, $(a_1-c)/a_2$ is the greatest integer in a_1/a_2 , since a_2 divides a_1-c and $a_2>c>0$, so

$$\frac{a_1 - c}{a_2} = \left[\frac{a_1}{a_2}\right],$$

where [x] represents the greatest integer function of x. Since c represents the quantity $a_1 \pmod{a_2}$, Equation (1.7) may be written

$$L\binom{\alpha_1}{\alpha_2} = \left[\frac{\alpha_1}{\alpha_2}\right] + L\binom{\alpha_2}{\alpha_1 \pmod{\alpha_2}}.$$
 (1.8)

This relation may be iterated as in the following example:

$$L\binom{23}{5} = \left[\frac{23}{5}\right] + \left[\frac{5}{3}\right] + \left[\frac{3}{2}\right] + \left[\frac{2}{1}\right] = 8.$$

Table 1 exhibits $L\binom{a_1}{a_2}$ for a_1 , a_2 equal to 1, 2, ..., 15.

TABLE 1.
$$L\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

a_1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2		1	3	2	4	3	5	4	6	5	7	6	8	7	9
3			1	4	4	2	5	5	3	6	6	4	7	7	5
4 5				1	5 1	3	5 5	2 5	6	4 2	6	3 6	7	5	7 3
6					ı	6 1	э 7	э 4	6 3	4	7 7	2	6 8	7 5	1
7						1		8	6			6	8	2	4 9
8							1	1	9	6 5	6		6	5	9
9								1	9 1	10	6 7	3 4	7	5 7	
10									1	10	11	6	7	5	4
11										1	1	12	8	<i>7</i>	7
12											1	1	13	7	5
13												1	1	14	9
14													1	1	15
15														1	1

Let

$$Q = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
, $C = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$, and $P = CQ = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

From (1.4), we have two forms of D^{-1} : $D_0^{-1} = Q$ and $D_1^{-1} = P$. D^{-2} has 2^2 forms, namely Q^2 , QP, PQ, and P^2 . D^{-n} has 2^n forms called D_j^{-n} which are the terms in the expansion of $(Q+P)^n$, where P and Q do not commute. The 2^n numbers j=0, $1, 2, \ldots, 2^n-1$ may be expressed uniquely in binary form using n digits so that each D_j^{-n} may be paired with a distinct binary number.

<u>Definition 1.3</u>: We choose to define D_j^{-n} as the product derived from the binary number j of n digits in which 0 is replaced by Q and 1 by P.

For example, if j=3, n=4, the binary form of j is 0 0 1 1, so that $D_3^{-4}=Q^2P^2$. It follows that $D^{-1}D^{-n}=D^{-n-1}$ and

$$D_i^{-m}D_j^{-n} = D_k^{-m-n}$$
, where $k = 2^n i + j$. (1.9)

Note that D_i^{-m} and D_j^{-n} do not commute.

2. SEQUENCES OF VECTORS

<u>Definition 2.1</u>: If $a_1 \ge a_2$, A is said to be *proper*, and if a_1 and a_2 are relatively prime, then A is said to be *prime*.

We will assume henceforth that A is a proper prime vector. It follows that PA and QA are proper prime vectors, and hence $D^{-n}A$ in any of its forms is proper and prime.

<u>Definition 2.2</u>: Let A(i, j) represent the vector A of length i = L(A) as follows:

$$A(1, 0) = DA(2, 0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

$$A(2, 0) = D^0 A(2, 0) = {2 \choose 1},$$

$$A(3, 0) = D_0^{-1}A(2, 0) = {3 \choose 2},$$

$$A(3, 1) = D_1^{-1}A(2, 0) = {3 \choose 1}$$
 and if $i > 2$, $j = 0, 1, 2, \ldots, 2^{i-2} - 1$,

$$A(i, j) = D_j^{-i+2}A(2, 0).$$

Consider the sequence $\{X_n = A(n+2, j), n=1, 2, \ldots\}$, where

$$X_n = D_i^{-n} {2 \choose 1}$$
 and $L(X_n) = n + 2$.

If j = 0, then

$$X_n = Q^n \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 and $X_{n+2} - X_{n+1} - X_n = 0$ from the identity $Q^2 - Q - I = 0$.

This identity may also be applied to cases where $j=2^{n-1}$, 1, and $2^{n-1}+1$ to yield the same recurrence relation. If $j=2^n-1$,

$$X_n = P^n \binom{2}{1}$$
 and $X_{n+2} - 2X_{n+1} + X_n = 0$ from the identity $P^2 - 2P + I = 0$.

This relation also holds for $j=2^{n-1}-1$, where $X_n=QP^{n-1}{2\choose 1}$.

Note that X is represented as a product of elements selected from the set (P, Q) and a vector $\binom{2}{1}$. Then CX_n is X_n in which its first matrix (P or Q) is replaced by its complement (Q or P). X_n and CX_n have the same recurrence relations. See Table 2.

TABLE 2. Sequences $\{X_n = A(n+2, j)\}$

j	X_n	Recurrence
0	$Q^{n}\binom{2}{1} = \binom{F_{n+3}}{F_{n}}$	$X_{n+2} - X_{n+1} - X_n = 0$
2 n - 1	$PQ^{n-1}\binom{2}{1} = \binom{F_{n+3}}{F_{n+1}}$	$X_{n+2} - X_{n+1} - X_n = 0$
1	$Q^{n-1}P\binom{2}{1} = \binom{L_{n+1}}{L_n}$	$X_{n+2} - X_{n+1} - X_n = 0$
$2^{n-1} + 1$	$PQ^{n-2}P\binom{2}{1} = \binom{L_{n+1}}{L_{n-1}} \text{ if } n > 1$	$X_{n+2} - X_{n+1} - X_n = 0$
$2^n - 1$	$P^n\binom{2}{1} = \binom{n+2}{1}$	$X_{n+2} - 2X_{n+1} + X_n = 0$
$2^{n-1} - 1$	$QP^{n-1}\binom{2}{1} = \binom{n+2}{n+1}$	$X_{n+2} - 2X_{n+1} + X_n = 0$

Let
$$K = \begin{pmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{pmatrix}$$
, $X_i = \begin{pmatrix} x_{i1} \\ x_{i2} \end{pmatrix}$, and $KX_i = X_{i+1}$, $i = 0, 1, 2, ...$, so that $K^n X_0 = X_n$. (2.1)

The characteristic equation for k is |yI - K| = 0 or

$$y^2 - (k_{11} + k_{22})y + |K| = 0.$$

By the Cayley-Hamilton theorem,

$$K^2 - (k_{11} + k_{22})K + |K|I = 0.$$

Multiply both sides of this equation on the right by $K^{n-2}X_0$, then

$$K^{n}X_{0} - (k_{11} + k_{22})K^{n-1}X_{0} + |K|K^{n-2}X_{0} = 0.$$

From Equation (2,1),

$$X_n = (K_{11} + K_{22})X_{n-1} - |K|X_{n-2}, (2.2)$$

a recurrence relation for X_n . We will assume here that

$$X_0 = \begin{pmatrix} x_{01} \\ x_{02} \end{pmatrix} = \begin{pmatrix} \alpha \\ b \end{pmatrix}.$$

The sequences $\{x_{n1}\}$ and $\{x_{n2}\}$ have been described by Horadam [1] as

$$\{w_n\} \ = \ \{w_n(\alpha,\ b;\ p,\ q)\}: w_0 \ = \ \alpha,\ w_1 \ = \ b,\ w_n \ = \ pw_{n-1} \ - \ qw_{n-2},\ n \ \ge \ 2.$$

In either sequence, $p = \operatorname{tr}(K)$, the trace of K, and q = |K|. We may substitute \mathcal{D}_j^{r} for K and A(2,0) for X_0 in (2.1) to yield a sequence with the property $L(X_n) = rn + 2$. Let $\mathcal{D}_j^{r} = S_1 S_2 \ldots S_r$, where $S_i \in (P,Q)$. Note that any 2×2 matrices A and B have the property $\operatorname{tr}(AB) = \operatorname{tr}(BA)$, so

$$tr(S_1S_2 ... S_r) = tr(S_2S_3 ... S_rS_1).$$

Therefore, p is the same for K equal to any cyclic product of the S_j . Since

$$|P| = 1$$
 and $|Q| = -1$,

 $q = |K| = (-1)^s$, where s represents the number of S_i equal to Q. Consider the

example:

$$D_{10}^{-5} = QPQPQ = \begin{pmatrix} 7 & 3 \\ 5 & 2 \end{pmatrix}.$$

There are five different cyclic products of the S_i : j = 5,9,10,18,20. These form the sequences

$$\{D_j^{-5n}A(2, 0) = X_n : n = 0, 1, 2, \ldots\}$$

having the recurrence relation

$$X_n = 9X_{n-1} + X_{n-2}$$

and satisfying $L(X_n) = 5n + 2$. These sequences are exhibited in Table 3.

TABLE 3. Related Sequences

j	Dį	- 5 i	$\{X_n: n = 0, 1, 2, \ldots\}$					
5	$\binom{7}{3}$	5 2)	$\left\{ \binom{2}{3}, \binom{19}{8}, \binom{173}{73}, \ldots \right\}$					
9	(8	$\binom{3}{1}$	$\left\{ \binom{2}{1}, \ \binom{19}{7}, \ \binom{173}{64}, \ \ldots \right\}$					
10	(7 ₅	3)	$\left\{ \binom{2}{1}, \binom{17}{12}, \binom{155}{109}, \ldots \right\}$					
18	(4/3	7 5)	$\left\{ \binom{2}{1}, \binom{15}{11}, \binom{137}{100}, \ldots \right\}$					
20	(5 ₃	⁷ ₄)	$\left\{ \binom{2}{1}, \binom{17}{10}, \binom{155}{91}, \ldots \right\}$					

REFERENCE

1. A. F. Horadam. "Basic Properties of a Certain Sequence of Numbers." *The Fibonacci Quarterly* 3, no. 3 (1965):161-76.

*** * * * ***