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INTRODUCTION 

by 
In addition to the well-known Fibonacci sequence Fin), recursively defined 
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F(l) = 1, F(2) = 1, F(n + 1) = F(n) + F(n - 1), for n > 2S 

is the Lucas sequence L(n)9 similarly defined by 

L(l) = 1, L(2) = 3, L(rc + 1) = L(n) + L(n - 1). 

Although the difference Lin) - F{n) increases without bound, the ratio L(n)/F(n) 
tends to a limiting value of v5. This result follows from the two representa-
tions : 

F(n) 

For a given integer m ̂  39 we now consider the sequence Gm(n) defined by 

Gm(l) = 1, Gm(2) = m$ Gm(n + 1) = Gm(n) + Gm(n - 1). 

From this we have Gm{n) = L(n) + (jn - 3)F(n - 1) and, consequently, the ratio 
Gm(n) /F(n) has a limiting value of \/5 + (m - 3) (A/5 - l)/2. This relationship 
also holds for any integral m since the inequality m ̂  3 was not crucial to the 
validity of the statement. Indeed, the result is valid for all real m. 

For Fibonacci-type sequences that begin with a nonzero first term other 
than one, say, for example, the sequence Ea ^(n) defined by 

Ha>b(l) = a, Haib(2) = b, Hatb(n + 1) = Ha>b(n) + Ha,b{n - 1), 

each term of which is merely a constant multiple of a Gm sequence, namely, 

H a,b (n) aGb/a(n). 
This means that the ratio Ea^ {n)IF(ri) has a limiting value of 

a[/5 + (b/a - 3) (A - l)/2]. 

Finally, for real numbers a, bs e, and d with ao + 0, the ratio of Haii(n) to 
HCsd(n) has a limiting value shown by 

H a,b (n) _ Hajb(n)/F(n) 2 a V^ + (b • 3 a ) (̂  1) 
-(«) c3d in)/F{n) 2c/5 + (d - 3c) (V5 - 1) 

GENERALIZED SEQUENCES 

(1) 

Let us consider the more general case where a Fibonacci-type sequence F^ is 
recursively defined by the sum of the previous k terms. The first k terms are 
arbitrarily defined by Ffe(0) = als Fk(l) = a2, ...9 Fk(k ~ 1) = ak> and then 

i - 1 
Fk(t) = £ **(,?), for i > k. 

J = i-k 
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From the theory of recursion we know that F-, is generated by a finite k-sum of 
powers by 

Fk(n) = f^" + f2r- + ••- + fkr», 
where f. are constants (real or complex), and the p. are the zeros of the poly-
nomial 

k _ „k-i _ . . . _ . p(x) 1. (2) 

It is shown in [3] that the roots of p are all distinct9 and all lie within the 
unit circle in the complex plane except one root which is real and lies between 
1 and 2» For simplicity this real root will be labeled rk , and the others will 
be denoted by r, • fc-i' This means r • < 1 for i < k, and 1 < r, < 2. 

The graphs of p for various k help to illustrate the location of the roots, 
as well as the additional fact that rk -> 2 as k increases [2]. It is important 
to realize that these roots are determined as soon as k is known, and that they 
have nothing to do with the initial values given to Fk(0) 9 Fk(l). Fk(k~ 1). 

The constants f^ can be determined from the side conditions a^ - Fk (i - 1), 
and by applying Cramer's rule we get: 

l: = 
J c - 1 

i~l 

ofe-1 ,k-l 

1 

1°. 

„k-l „fc-i 

(3) 

Since the denominator of this expression is the k x k Vandermonde determi-
nants its value is given by 

k 
O ixi - r-). (4) 

i = 2 
i> 3 
Suppose we have two such Fibonacci sequences of the same types say Fk and 

Gk3 where 
Fk(i) = ai + 1 and Gk(i) = 2?i + 1 for 0 < i < £ - 1. 

Then there exist constants f , j , • • • » A » g^ > #2 » • • • s £7fe such that 

V n ) = E /i*V and cfc(«) = £ ^ r " 
i = 1 i = 1 

(5) 

and the r̂  are the roots to (2). The ratio Fk(n)/Gk(n) must then approach fk/gk 
as n increases. The problem then becomes one to evaluate fk and g which, in 
turns reduces to solving p(x) = 0. 
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TWO SPECIF C CASES

When k = 2, we have F 2(n) = + ���� and
ratio F2(n)/G 2(n) � f 2/g 2 where, from (3), we get

(n)

and (6)

Since r l , r 2 are the roots to - x-I = 0, with r 2 being the root of modulus
between 1 and 2, then r l = (1 - 15)/2. Thus, the ratio f 2!g2 reduces to

2a
2

- aIel - IS)

so then

a
l
r
l
r
2 - a 2 (r 1 + r 2) + a

f 3!g3
3

(8)b l r l 'P 2 b 2 ('PI + 'P 2) + b 3

The values for 'PI' r are determined by using Cardano's formula:
2

= i[2 - #19 + 3m - v!19 - 3m +

1'2 = i[2 - ./19 + 3m - .q!19 - 3m -
3i{.q!19 + 3m - .q!19 - 3m}J
3 i{f! 19 + 3m - ./19 - 3m }J.

This gives the approximate values 'PI -.4196433 + .6062906i and 'P 2 = 'Pl.
Consequently, the ratio f 3 /g 3 is real (since r I 'P 2 and 'PI + are real) with
the approximate value

.5436888a I + .8392866a 2 + a 3

f 3!g3 = .5436888b I + .8392966b 2 + b 3 • (9)

Evaluation of f k /gk for k > 3 ultimately rests on effectively computing
the complex roots to p(x) = O.

APPROXIMATING COMPLEX ROOTS

Among the many iterative numerical methods available for locating roots to
polynomial equations, probably the best known is Newton's method. Typically,
this method is employed to find real roots, butit can be generalized to the
complex plane [5]. To this end, we begin with a complex seed zo' and consider
the sequence {zn} of iterates, zn+l = zn - P(Zn)/p'(Zn). It appears, from data
gathered, that every complex seed generates a sequence that eventually converges
to a root of p(z) with, of course, varying rates of convergence. But an inter-
esting question, and one that was posed as far back as 1879 by Arthur Cayley
[4], is to determine the regions of the plane whose members generate sequences
that converge to identical roots of p (z) . The readers may wish to determine
the corresponding regions for a specific polynomial. The author gathered data
on Z3 - Z2 - Z - 1 = 0 and approximated the partitions of
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{ (x, Y) : Ix I � 1, IY I � I}.

The shaded regions in Figure 1 consist of those "seeds" that generate sequences
that converge to the root r 2 with r 2 = -.4196 - .6063i. Obviously there is no
reason to suspect that the points in the plane that generate sequences that
converge to the same root form a connected set. Likewise, statements concern-
ing symmetry of regions are not obvious to formulate. Instead, there is some
considerable disconnectedness to the regions, especially for this one in the
near vicinity of the x-axis, where one can find seeds that generate sequences
that converge to each of the three roots to the polynomial.

FIGURE 1. A region whose members generate the same polynomial root

It is of interest to point out that the associated notion of Julia sets (a
concept developed by Julia and Fatou at the turn of the century in regard to
the iteration of rational functions in the plane) is discussed in [4] and
accompanied by some excellent color computer graphics.

CONSECUTIVE FIBONACCI NUMBERS

Suppose we take a more careful look at the sequence of ratios of consecu-
tive Fibonacci numbers. For the standard Fibonacci sequence F(n), the sequence
of ratios F(n)/F(n - 1) alternates monotonically. Thus, setting

r(n) = F(n)/F(n - 1),
we have

r(2i) < r(2i + 2), r(2i + 1) > r(2i + 3), r(2i) < r(2i + 1), for all i.
But what happens if F(n) is replaced by the more general Fibonacci sequence
Fk (n), where

Fk(i) ai' for 1 � i � k,
i-I

Fk(i) =. � Fk(j), for i � k + 1.
J='l,-k

In this general setting the sequence of ratios rk(n) = Fk(n)/Fk (n- 1) does not
alternate monotonically, nor does it alternate in k-tuples. Patterns seem to
be haphazard at best. But one can make a statement about the maximum number
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of ratios that form a consecutive monotone string. More specifically, this
means (monotone increasing is sufficient)

max{j:3i, i >k and Pk(i + 1) <Pk(i + 2) < ... <rk(i +j)} ��� (10)

This inequality will be established if we show that whenever

Fk (i + 1) Fk(i + 2) Fk(i + k)---< <... < (11)
Fk(i) Fk(i + 1) Fk(i + k - 1)

it follows that

Fk (i + k) Fk (i + k + 1)

Fi<. (i + k - 1) > F k (i + k)

Setting f j = Fk (i + j) to simplify notation, it follows that

f l f k - l < fofk , f 2 f k _l < f l f k , ••• , f k - l f k - l < f k - 2 f k ,
so summing gives

and then adding f k -11k to both summations yields

k k-l
f k+ l f k - l = 1: fifk - 1 < 1: fifk = fkfk ,i-I i-O

(12)

(13)

(14)

which establishes the desired result.
So for each given choice of k, each string of ratios of consecutive k-gen-

e1ralized Fibonacci numbers Fk (n) IFk (n - 1) will contain a maximum ofk consecu-
tive monotone terms. Consider the following example with k = 3.

TABLE 1. Generalized Fibonacci Numbers and Their Ratios

n F g (n) Fg(n)/Fg(n - 1)

1 1
2 1
3 2
4 4 2.00
5 7 1.75
6 13 1.85714
7 24 1.84615
8 44 1.83333
9 81 1.84091

Here we have the three consecutive monotone terms,

F 3 (6) F 3 (7) F 3 (8)
F
3

(5) > F
3

(6) > F
3

(7)

and:, of course, the next ratio reverses the monotonicity,
F 3 (8) F 3 (9)

F 3 (7) < F 3 (8) •

1987]
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Data seem to indicate that this result is best, in the sense that every
Fibonacci sequence Fk contains a string of exactly k consecutive monotone
ratios. What we can prove here is the existence of a sequence, for each k,
which satisfies this conjecture. Thus, for k � 2, we define the sequence Fk by
Fk(n) = 1 for n < k and Fk(k) = k. Then

Fk(k + 1) 2k 1, Fk(k + 2) 4k - 3,
Fk(k + 3) 8k 7, Fk(k + 4) 16k - 15,

and the pattern continues up to

Fk (2k - 1) = 2k- 1 k - (2 k - 1 - 1) and Fk (2k)
The pattern breaks with the next term for

Fk (2k + 1) = (2 k+1 - 2)k - (2k+ 1 - 2 - k).
The ratios Fk (k + i) /F k (k + i-I) form an increasing sequence for i

k because the inequality

2nk (2 n - 1) 2n +1k (2n + 1 - 1)
������������������������������

2n - 1k - (2 n - 1 - 1) 2n k - (2 n - 1)

1, 2,

(18)

holds for all n � 1. Furthermore, the string of increasing ratios is then re-
versed with the next ratio because

Fk (2k) Fk (2k + 1)

Fk (2k - 1) > Fk (2k)
It is interesting to look at the similar question of finding a Fibonacci

sequence with k consecutive decreasing ratios. Unlike the previous example,
such a solution cannot be found by defining the initial k terms in the sequence
from among the elements 1, 2, ... , k. We need to choose from a larger set of
positive integers. Thus, for k � 2, we define the sequence Fk by

Fk (1) = 1, Fk (2) = 2, Fk (3) = 4, ... , Fk (k - 1) = 2k- 2
, and Fk (k) 1.

For values of i with 1 � i � k, the term Fk(k + i) has the value
Fk (k + i) 2k+(i-2) - (i - 1)2 i - 2 (19)

and, consequently,

Fk (k + i-I) >
Fk (k + i + 1)

( ) ' for i = 1, 2, ... , k - 1.
Fk k + i

(20)

Many other questions remain for the interested reader to investigate. Can
one predict when these monotone strings of ratios of length k will occur, or
how often they will occur? Are there strings of length i for each i less than
k for each given sequence? Are there as many increasing strings as decreasing
strings?

REFERENCES

1. A. Cayley. "The Newton-Fourier Imaginary Problem." Am. J. Math. 2 (1879):
97.

2.. Ivan Flores. "Direct Calculation of k-Generalized Fibonacci Numbers .. " The
Fibonacci Quarterly 5 (1967):259-66.

3. E. P. Miles, Jr. "Generalized Fibonacci Numbers and Associated Matrices."
Amer. Math. Monthly 67 (1960):745-57.

142 [May



RATIOS OF GENERALiZED FIBONACCI SEQUENCES

4. H. 0. Peitger, D. Saupe, & F. Haeseler. "Cayley's Problem and Julia Sets."
The Mathematical Intelligencer 6 (1984):11-20.

5. Sylvia Sorkin. "Using an Interactive Computer Program in the Calculus
Classroom To Find Complex Roots of Polynomial Equations." Mathematics and
Computer Education 18 (1984):93-99.

143


