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INTRODUCTION 

The idea of the golden section is familiar to a wide audience. While many 
of the properties that arise from consideration of the golden section seem to 
be unique to it9 they may belong to a much wider class of "sections." This 
paper presents the golden section and certain related ideas as special cases of 
such a wider class. 

To provide the context for what follows and to introduce some notations we 
include here a quick reference to the golden ratio, (J). Let a line segment AB 
be given and9 for convenience, let its length AB = 1. If we determine a point 
C between A and B and such that AB/AC = AC/CBS we say the point C divides AB in 
golden section (see Fig. 1). 

x I- x 

Figure 1 

It is a simple matter to find the ratio (j) = AB/AC that belongs to the gol-
den section. If we set x = AC s then CB = 1 - x and we have the requirement 

<|> = l/x = x/(l - x)9 0 < x < 1. 

From this equations we infer that l/<j) = <)) - 19 or 

(J)2 - <f> - 1 = 0. (1) 

From the quadratic equation, and since x > 09 we have 

$ = (A + l)/2 = 1.61803. 

The number (f> has the interesting property that if we subtract the value 1 from 
it we obtain its reciprocal. 

As readers of this journal know wells the golden ratio bears a relation to 
the Pentagon of Pythagoras9 so much admired by the Greeks, to the golden rec-
tangle where it gives the ratio of adjacent sides, to the logarithmic spiral, 
and to the Fibonacci numbers. Specificallys if Fk denotes the kth Fibonacci 
number, then as n -*- °°9 Fn+1/Fn "* $• 

THE MODIFIED GOLDEN SECTION AND GOLDEN RATIO 

In what follows we will develop some ideas similar to those alluded to 
above and growing out of a generalization of the definition of the golden sec-
tion. So consider again a line segment AB of length AB = 1 and let C be a point 
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between A and B and such that AB/AC = a2AC/CB with a > 0, We can write this 
relationship as 

AB aAC , a > 0* 
aAC CB 

Set \\)a = AB/aAC and l e t AC = x . Then CB = 1 - xs ipa = 1/ac = a x / ( l - a;) , and 

(2 ) \b2 - - \b - 1 = 0 , 

which is the analogue of equation (1). For conveniences we let 3 represent the 
reciprocal of ipa: 

= l/i|>a = a^ 
Vl + 4a2 - 1 

2a 

Suppose now that we let a > 0 be chosen and construct a rectangle ABDF (see 
Fig. 2) whose sides are in the ratio \\)a = 1/8 = AB/BD* A few simple calcula-
tions show that if from such a rectangle we remove the rectangle ACEF whose 
sides AC and CE are in the ratio 1/a, i.e., AC = x = g/a and CS7 = 85 then the 
remaining rectangle BDEC has sides also in the ratio 

o^/(l - a;) = 8/(1 - x) = ipa. 

Thus, as in the case of the golden rectangle, the two rectangles ABDF and BDEC 
are similar and, by continuation of the process described here, we can construct 
an infinite nested sequence R1, i?2, R , . . . , i?n, . .. of rectangles, all of which 
are mutually similar. 

U, J) ̂ — ^ 

Figure 2 

By varying a, of course, we vary the value of 3 and so also the shape of 
the rectangles. Since 

1 • Q 1 • ^ + ^ " !• A 
lim 3 = lim = 0, 

It is clear that to small a there correspond small values of 8- Thus, as a ->- 0 
the rectangles tend toward "degenerate" rectangles, i.e., toward line segments. 
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From 

lim 0 = 1 , 

we infer that as a increases without bound the rectangles approach squares. We 
note also that for 0 < a < °°, 0 < 3 < 1. 

Suppose that, for some value of a, we let {Rn} be the associated sequence 
of rectangles obtained by the construction described above. Recall i?w-1 D R . 
Take the vertex A (see Fig. 2) to be the origin of a rectangular coordinate 
system with the side AB lying on the positive x axis. Cantor's nested set the-
orem then assures us that there is a point (X, Y) which lies in each rectangle 
Rn. Now each rectangle Rn has sides of length gn_1and 3n* with 3n_1 being the 
longer side. It is clear from Figure 2 that 

x = i - 3 2 + &k - e6 + ••• 
= 1/(1 - B2) [= a/(2a - 3)] 

and 

Y = 3 - 33 + 35 - 37 + ••• 

= 3* [= a3/(2a - 3)]. 

If we eliminate 3 from these equations, we find that 

^ . X - X . or (X- I / „ « - ( ! ) ' . 

Thus, the points (X9 Y) lie on a circle of radius 1/2 and having its center at 
(1/2, 0). As a •* 0, (X, I) -> (1, 0) along the circle, and as a •> «>5 (J, Y) -> 
(1/2, 1/2). Specifically, the points (J, J) lie on the quarter-circle shown 
in Figure 3. 

Figure 3 

The point (X, Y) can be found by a very simple geometrical construction. 
If Rn and Rn+1 are any two consecutive rectangles, then (J, Y) lies at the in-
tersection of corresponding (and orthogonal) diagonals of these rectangles. 
Figure 3 above illustrates the case when R1 and R2 are the given rectangles. 
The diagonals here are AD and BF. 
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We turn next to the logarithmic spiral associated with the rectangles Rn. 
Before doing so, however9 we mention briefly the so-called rectangular spiral 
constructed from the longer sides of the rectangles Rn (see Fig. 4). This spi-
ral "terminates," of course, at the point (X, 7) and has length (measured from 
the origin) 

1 + 3 + 32 + 

1/(1 - 3) 

2a 

2a - Vl 4- 4a2 + 1 

a(l + i|/a). 

r ~i 

! H 
hii 

J j 

Figure k 

By a translation, we can place the origin of our coordinate system at the 
point (X, J). Let Pn9 n = 1, 2, 3, — , be corresponding corners of the rec-
tangles Rn and so also corners of the rectangular spiral. The points Pn can be 
shown, after some calculation, to have the following representations in terms 
of the new coordinate system: 

= (-X, -Y) 
= (1 - X, - J ) 

= (1 - X, 6 - I) 
= (1 - g2 - X, 3 - B3 

r / e» -3"-1 \ 
\l + 62' 1 + 3 2 / 

/ 6 » - i B » x 

\ l + 3 2 ' 1 + 3 2 / 

( -P" e n + 1 \ 
\1 + 3 2 ' 1 + 3 2 / 

/ - 3 " - 1 -6" \ 

- I) 

i f n = kk 

i f n = i\k 

i f n = i\k 

A -p ™ /. i, 
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If we express these points in terms of the polar coordinates r and 85we obtain 
the cleaner expressions: 

pn = I , Arctan 3 + ([n/2] - 1)TTJ if n is odd,' 
V I + 32 / 

or 

pn = , "?•» Arctan(-1/B) + ([n/2] - 1)TT J if n is even. 
\vT~+~p" / 

Here [•] denotes the greatest integer function. 
A few additional calculations convince us that each of the points Pn lies 

on a logarithmic spiral r = aebe* The constants a and 2? are easily determined 
from the requirement that the spiral pass through, let us say9 P2 and P3 * That 
it passes through P2 implies that 

and 6 = Arctan(-l/3) = -Arctan(l/3). 
vTT~F 

Thus9 
g - ae-b Arctan(l/3)e ( 3 ) 

/l + 32 

That the spiral passes through P implies 

B2 
P - a r l ^ Q - Arctan 3» 

7l + 32 

Thus9 

g = ae* A r c t a n lK (4) 
/ I + 62 

Combining equations (3) and (4) yields 

g _ eb(Arctan B + Arctan( 1/3))# 

But the exponent here reduces to iinr/2. SO B S eb>n/2{ and £> = 2 In g/ir < 0 . Now 
from (4) we can conclude that 

Vl + P" exp(2 In 3 Arctan g/ir) 

and that 

f-ir19)-
2 

expl 
/ l + 32 exp(2 In 3 Arctan B/TT) 

Alternately, 
1 2(6 4- TT ™ Arctan g) 

r - — £ — 3 * (5) 
i/I + 32 

Figure 5 shows the spiral when a ~ 2. 
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Figure 5 

In the construction above, we have taken the points Pn to be at correspond-
ing corners of the rectangles Rn« The decision to use these corners was arbi-
trary . If P± is chosen to be any point within or on R± and P2, P3 to be 
the corresponding points of Rz, i?3, **., then the spiral passing through all of 
the points Pn would again be logarithmic * 

OTHER RELATED IDEAS 

We consider next some relationships which are analogous to those between 
the golden section, golden rectangles, and the Fibonacci sequence. Let a be 
given and consider the sequence {un}, where 

Jl 
_l f/l + Vl + 4q2\n _ /1 - Vl + 4a * \n1 

Readers familiar with the Fibonacci sequence will recognize that if a = 1, then 
the. last expression is the Binet formula and {un} is nothing more than the Fi-
bonacci sequence. To simplify calculations for the moment, set 

so that ut 

= vT+4o29 a - (1 + 3)/2, and b = (1 - z)/2 

(an - bn)/z» Then i t easily follows that 

( l /3) [ (a n - 1 - b"'1) + a2(an"2 - bn'2)] Un-1 + aX-2 
= (l/z)lan~2(a + a2) - bn~2(b + a2)], 

But a + a2 ~ a2 and b + a2 = b2» Hence, 

(6) 

This serves as the law of generation for: the sequence {un}. If a = 1, this 
reduces to the familiar law of generation for the Fibonacci sequence. 

Although we will not prove their validity, we list here a few of the rela-
tionships which are analogous to the relationships between terms of the Fibo-
nacci sequence• 
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1. un = (1 + 2a2)un_2.- a \ _ , 

2. u1 + w2 + u3 + • • • + un = (wn+2 - l)/a2 

3. u2 + w2 + • • • + U* = (1 - a2)[u1u2 + u2u3 + ••• + un^1un] + unun+1 

5. For any positive integer &s
 u

n\ukn* 

The first four of these relationships can be shown by an appeal to (6) and/or 
an induction proof. The fifth follows directly from the definition of w„. 
From the second of these relationships, we can infer that when a is an integer", 
then un = 1 mod a2. The table below gives values of un for some choices of a 
and of n. 

n = 

1 
2 
3 
4 
5 
6 

! 7 
! 8 
! 9 
! 10 

15 

1/3 

1 
1 
1.11111 
1.22222 
1.345679 
1,4814814 
1.6310013 
1.7956104 
1.9768328 
2.1763450 

1/2 

1 
1 
1.25 
1.50 
1.8125 
2.1875 
2.640625 
3.18145 
3.84765 
4.64453 

a = 
2 

1 
1 
5 
9 
29 
65 
181 
441 
1165 
2929 

325525 

3 

1 
1 
10 
19 
109 
280 
1261 
3781 
15130 
49159 

28607050 

4 

1 
1 
17 
33 1 
205 
833 
5713 
19041 
110449 
415105 

884773585 

Our next question is the obvious one; 

How does lim u /w relate to the ratio ip ? 
7-2 ->- oo n + J- 77, a 

From the definition of un* we can write 

1 - (b/a)n+1 n + l a n + 1 i^n + 1 
= a Un an - hn 1 - (b/a)n 

But \bla\ = |(1 - s)/(l + 2 ) | < 1, since z > 0 for all a. Thus, 

lim un+1/un = a = (1 + z) 12 = aipa. 

This relationship is the analogue of 

where {Fn} is the Fibonacci sequence and <J> is the golden ratio. 
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Two further interesting properties which belong to the Fibonacci numbers 
also belong to the "modified Fibonacci numbers11 un. If we form a matrix M of 
order m ^ 3 and whose entries, row by row, are m2 successive terms uk, uk + 1$ 
uk+2> ' ' ' > uk + m2-i9 then det M = 0. So, for example, if m = 3 and a = 2, and if 
we choose the nine successive terms of {un} to be 1,5, 9,29, 65, 181, 441, 1165, 
and 2929, then 

M = 
1 

29 
441 

5 
65 

1165 

9 
181 

2929 

That the determinant of M is zero follows from the fact that, in any matrix M 
the third column, U3 

u2 + cr£/i: where U1 and U, 
constructed as above from the successive terms 
garded here as a column vector) , is equal to 
the first and second column vectors belonging to M. 

Another interesting property relates to magic squares of order 3. 
lustrate this with an example. Thus, consider the magic square 

(re-
are 

We il-

8 

3 

4 

1 

5 

9 

6 

7 

2 

Summing along rows, columns, or diagonals yields the same result, 15. Now let 
a be given and determine the terms ul9 u2, u3, . . . , u3 of the sequence iun]. In 
the magic square above, replace the number k with the term Uy. to obtain the 
square 

ua 

U3 

U» 

"l 

u5 

Ug 

U6 

u7 

u2 

Then 
UQU^Ur + UJJLJUr, + U,UnUn o l b d o / 4 9 2 u u u + u u u + u u u . 

8 3 4 1 5 9 6 7 2 
For a = 3, the above square with the associated products and sums is: 
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3781 

10 

19 

718390 

1 

109 

15130 

1649170 

280 

1261 

1 

35380 

1058680 

1374490 

287470 
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More generally, let the magic square 

h 

k 

P 

i 

I 

q 

j 

m 

r 

be given, where 

h + -i + j =k+i+m=p+q+r=h+k+p =-i + l + q=j+m + r. 

Now, construct the corresponding square 

uh 

uk 

Up 

u i 

u l 

uq 

ui 

um 

ur 

whose entries are the modified Fibonacci numbers. 
Employing the notation of page 123 [un- (an - bn)/z], it is a simple matter 

to show that 

UfrUjUj + UkUzUm + UpUqUr = UhUkUp + Uj-UgUq + UjUmUr* 

The reader will quickly observe, for example, that the expansion of the expres-
sion u^u^Uj contains the term (l/z3)ah+'l' + J\ while the expansion of u^u^Up con-
tains the term (l/z3)ah+k + P. But h+i + j = h + k + p« Similarly, the expansion 
of UyUiUm contains the term (-l/s3)ak+^m9 while the expansion of UjUmur con-
tains the term (-l/s3)a«7+pZ?m. But j + r = k + £ so that the terms in question 
are equal, 

While the property alluded to here holds for any 3x3 magic square, it does 
not hold generally for larger magic squares. The reader may verify this by 
considering the 4x4 magic square: 

16 

5 

9 

4 

3 

10 

6 

15 

2 

11 

7 

14 

13 

8 

12 

1 
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CONCLUSION 

We have provided here only a few of the most significant relationships and 
properties arising from consideration of the ratio i/;a. Many others analogous 
to those arising from the golden ratio may be found. Indeed, what we have 
shown here places the golden section, the golden rectangles, the Fibonacci se-
quences and the properties pertaining to them within a continuum in which they 
appear as a part of the special case a = 1. 
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