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For a finite sequence of nonnegative integers, 4 = {alj}, J=1,2,3, ...,
n, define its set of absolute differences by the recursion relation
a;; = |az.q, ;= ai-l,j+1|’ for 2 + 4 <n + 1.

We write A along with its set of absolute differences in the natural way indi-
cated in the following table and call the resulting triangular array T(4).

1 2 4 4 8 10 6

If the left "column" of 7T(4) consists totally of 1's, we say that 4 is a
good sequence. There are a great many good sequences of length n, ranging from
the "smallest," {1, 0, 0, ..., 0}, to the "largest," {1, 2, 4, ..., 2" '}. Gal-
breath conjectured that the sequence {p, - 1}, where p, is the Z*! prime, is an
infinite good sequence (see [1]). A natural question to ask is: How many good
sequences are there of length n? In this paper, we shall answer this question
for small »n, and present a heuristic recursion relation.

Let G(n) be the set of good sequences of length n, with g(n) = #G(n). If
g € G(n), we note that each row of T(g) is a good sequence. This observation,
along with the obvious one that any initial subsequence of a good sequence is
also good, leads to the following definitions.

For g € G(n - 1), let e(g) = #{g* € G(n), with g an initial subsequence of
g*}, and e*(g) = Hg* € G(n), with g the second row of T(g*)}. We say that e(g)
is the number of ways to extend T(g) to the right, and e*(g) is the number of
ways to extend it upward.

Now, assume g € G(n - 2), and extend T(g) both to the right and upward, as
in Figure 1. If we choose ¢ so that |b - c| = a, we will have a triangular
array that is T(g*) for some g* € G(n). Since ¢ can be chosen in either 1 or 2
ways for a given a and b, based on their relative magnitudes, we have the fol-
lowing equality.

e*(g) ways

gn) = > e(@e*(g)B(g), g - ...b Je

getGn-2)

where 1 < B(g) < 2.

e(g) ways

FIGURE 1
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The average value of both e(g) and e*(g) is g(n - 1)/g(n - 2). Also, since
a and b are each the last elements of members of G(n- 1), we expect o< b about
half the time, and vice versa. In other words, we expect B(g) ~ 3/2 on aver-
age. By replacing e(g), e*(g). and B(g) with these "averages” in the previous
sum, we have an "expected" asymptotic recursion relation,

_ 2
g(n) ~ %‘L%ﬁ%;jf%%l—, as n > o,

To test this relation, g(n) was calculated for n < 10. Its values, along
with the values for B(n) = gn)gn - 2)/(g(n - 1)2, are presented in Table 1.

TABLE 1

n g(n) B(n)
1 1] -

2 2 | -

3 5 { 1.250
4 17 | 1.360
5 82 | 1.419
6 573 1.449
7 5,839 | 1.458
8 86,921 | 1.461
9 1,890,317 | 1.461
10 | 60,013,894 | 1.460

The following questions naturally arise:
Is there a formula for g(n)?

Does lim g(n)g(n - 2)/(g(n - 1))? exist? If so, what is it?
7+ ©
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