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We are concerned with finding the convergents Cj(a) = —̂ -, 
to a positive real number a that satisfy the inequality, v 

in lowest terms, 

la - CJ (a) I < 
r,q) 

o < e < i . ( i ) 

From Le Veque [3] or Roberts [4], we have the following theorems. 

Hurwitzfs theorem states that, if a is irrational and 3 = 19 there are in-
finitely many irreducible rational solutions to (1). 

Dirichletfs theorem states that, if 3=v5/2, then all rational solutions to 
(1) are convergents to a* 

Since l/v5 < 1/2, we note that the expression "irreducible rational solu-
tions11 in Hurwitzfs theorem may always be replaced by "convergents/1 

It is readily shown (see [4]) that if a = T = (1+ >/5)/2 (the Golden Mean) 
then there are only finitely many convergents to x which satisfy (1). In [5], 
van Ravenstein, Winley, & Tognetti have determined the convergents explicitly,, 

We now extend [5] by determining the solutions to (1) when a is equivalent 
to T5 which means the Noble Number a has a simple continued fraction expansion 
(a 0 2 I , 1, 1, ...) where the terms a-, ,, an are posi-
tive integers, an ^ 2 and a0 is a nonnegative integer, 

Using the notation of [5], with Cj replaced by Cj (a), and well-known facts 
[see Chrystal [1] and Khintchine [2]): 

CD Pj 

for j > 0, p_2 

Pi-2 + ajPj-i> 
fli-2 + a^j-i> 

0 and q^2 = p_x = 1; 

(ii) qj+1 > q6 > qjml > ••• > qQ - 1; 

(iii) p ? -P,.^..! - (-DJ'; 
F • 

(iv) C(x) = -4/-^, where F- is the j'th term of the 

(v) F< = 

Fibonacci sequence {1, 1, 2S 3S 5, ...}; 

T J+I - (1 - T)J' + 1 

A 

(2) 

It follows from (2(1)) that 
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C, (a) 
p. + a.p. 

7- P j-n- lrn-l 

, J = 0, 1, 2, . , n 

F. p 
3 - n L n 

3 L3 • 
+ F. 

and 
F. q + F. a ' 

j = n + l , n + 2 , .. ., 

(-D" 

(3) 

P + TPn 
a = lim CJ; (a) = — ; = C„ (a) + - , , N 

Using (2(111)), and (2(iv)) in (3), we see that, for j > n + 1, 

£. ,(T)p + p n 
J - n- l v y t r c c'w - 1 

C* = ~C- Al)q +q / 

^ • - n - l ^ ) = F 
3-n 

and 
j - n- 1 

I r ^ l ' T - C i - ^ - x ( T ) l 
| a " ° ' W | " ( ? „ . ! + < 7 „ T ) ( C 7 . . „ . 1 ( T ) < 7 B + < 7 n . 1 ) 

(4) 

Hence, for j ^ n + 1 , (1) reduces t o 

IT - C ^ ^ C O l < 
A F . 2 ,(C. . (T)a + a . ) 

j - n - l v Q-n-V- '^-n ^n-ly 

If j - n - 1 is e1 

[2 = 1 + T in (5) we seek nonnegative values of fc such that 

(5) 

3-n- 1v "J -

If j - n - 1 is even (j = n + 1 + 2fe, fc = 0, 1, 2, . . . ) 9 then using (4) and 

Using (2(v)), this reduces to 

fc < ln| 4 In x. (6) 
Vr'(l - S)(T?n +qn_1), 

Now nonnegative values of k in (6) exist only if 

> 0, In 
W - e)(T<7n +^_1) 

which means that 

lu < 3 < 1, where 3U = A 

If j - n - 1 is odd (j = n + 2 + 2fc, fe = 0, 1, 2, ...)> then (5) reduces to 

(F2k + 2 ~ ^ 2 k + 1 ^ F 2 k + 2% + F2k+1«n-J < ^ n - X + ^ ) -

Using (2(v)), this further reduces to 

T(-R7 . - q ) 
Ln -1 nn rhk+ 6 (1 - 3) < 

T<?n + < 7 n - l 
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Since the left side is positive and the right side is negative, 

T < x - a« < 0, 

there are no nonnegative values of k which satisfy (7). 

This completes the solutions to (1) for j > n + 1. 

If j - n, then from (3) we have 

I a - Cn (a) I = — - , • r-, 
' a (TO + q n) 

and so (1) becomes 

1 < 6 

which means 3 > 
^n ^n - 1 

.nee T -However, since T - (q /q ) < 0, we have a "> TO , and this gives 
*w n-1 'n ln -1 

xa + q 
> l , 

which is not possible, Hence, Cn(a) does not satisfy (1). 
Consequently, there are no convergents that- satisfy (1) if g < 3W and j ̂  n. 
On the other hand, if 3 > 3̂ > then there are [5] + 1 convergents that sat-

isfy (1). They are given by 

F. p + F. p 
/-r/'N 3-rv-n j - n - l L n - l . - 0 . i . o r ^ i 
0, (a) = — , j = n + 1, n + 3, *.., n + 1 + 2 [5], 

t/ J? Q "T* x* . £7 
Q-rP-n j-tt-l^n-l 

where # (o) 
5 = lnl — 1/4 In x, 

Td(l - 3)(Wn H-^^) 

and [£] denotes the integer part of S» 
We note that if n = 0, then a = (a0; 1, 1, 1, . * .) > a0 > 2, and the result 

(8) reduces to that given in [5]. 
It does not appear to be possible to mal̂ e a precise statement as to which 

of the convergents C-j (a) for j = 0, 1, 2, . . ., n - 1 will satisfy (1) without 
knowing the values of aQ9 a19 -.., #n_i°  However, we have shown that, if 0 < 3 
< I, then there are only finitely many convergents to a which satisfy (l)o 
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