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INTRODUCTION 

The division algorithm guarantees that when an arbitrary integer b is di-
vided by a positive integer a there is a unique quotient q and remainder 
r satisfying 

0 < r < a 

so that 

b = qa + r. 

We will assume that 0 < a < b in this paper, 

Euclid's algorithm iterates this division as 

b = q±a + P-L, 0 < v1 < a 

a = q2?3
1 + r2, 0 < rz < r1 

ri = ^3P2 + p
3> °  < rs < r2 

rn-3 = <?n-irn-2 + r„-1» °  < Vn -1 < Pn - 2 
p - q v + 0» 
n - 2 ' n n - 1 

Euclid's algorithm terminates when vn =0. What makes the algorithm useful 
is that Pn_! is then the greatest common divisor of a and b. The worst case, 
in the sense that the algorithm takes the longest possible number of iterations 
to terminate, is when the sequence 

a > r1 > r2 > ••• > vn = 0 

decreases to 0 as slowly as possible. The smallest pairs (b9a) for which this 
happens are found by choosing each quotient q^ to be 1 except the last one, 
where vn_2 - 2 and Pn_x = 1 forces qn = 2. This makes v

n-3 = r„_2 + Pn -1» 
^n-h ~ rn-3 + rn-2> anc^ so on» back until we have that a and b are consecutive 
Fibonacci numbers. Lame first noticed the connection between Fibonacci numbers 
and Euclid's algorithm in 1844 (see [3]). 

General results based on this insight include: 
1. If a < Fn , then Euclid's algorithm terminates in at most n - 2 steps, 

and the smallest pair (b9a) taking exactly n ~ 2 steps is (Fn9Fn^1) > 
2. If (bnsan) denotes the pair (2?,a) with smallest b for which Euclid's 

algorithm first takes n steps to terminate, then 

lim bn/an = lim Fn+2/Fn + 1 = (1 + 51/2)/2. 

The intermediate steps in Euclid's algorithm can be unwound to find inte-
gers x and y satisfying 

d = ax + by9 
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where d i s the greates t common divisor of a and b. A short BASIC program for 
i t e r a t i n g the divis ion algorithm i s given in Figure 1. 

6 0 P R I N T "WHAT TWO NUMBERS TO START W I T H " ? s INPUT B , A 
7 0 Q = I N T ( B / A ) s R = B ~ - Q * A 
SO P R I N T B / t = u i Q , " * " ? A . ? " - * - » » R 
9 0 B-AsA-=R 
1 0 0 I F A=0 THEN GOTO 1 2 0 
110 GOTO 7 0 
120 PRINT "AL60RITHM TERMINATES»H 

Figure 1. A BASIC Program for Euclidfs Algorithm 

The algorithm for radix conversion can also be written as a succession of 
divisions. Starting with b positive and a ^ 2, we can write 

b = qxa + PI 9 0 < P X < a 

q1 = qza + r2, 0 < r2 < a 

Vn-2 = ^n-ia + rn-l> °  < Vn -1 < a 

<?n-l = ^na + Vn> °  < Vn < a* 

In the ith steps qi = [b/a'l]3 so, using the natural stopping place qn = Os 
the algorithm takes n steps to complete, where an~1 < b < an. The value of 
this algorithm is that successive substitution gives 

b = r1 + aq± = r1 + a(r2 + a^2) = ••• 

= r± + a(r2 + a(r3 + a(...(rn_1 + arn)...))) 

= r1 + ar2 + a2P3 + ».* + a""1^, 

which says that the remainders can be interpreted as successive digits (from 
right to left) in the expansion of b using the base a. 

The BASIC program used for Euclid?s algorithm works here as well with only 
minor modifications. Line 90 becomes 

90 B=Q 

and the test for completion in line 100 uses B instead of A. 
Whatever number is used for Z?, it is clear there is no value for a that can 

make the algorithm take longer to terminate than a = 2. With this choice for 
a9 the first b that makes the algorithm terminate in exactly n steps is 2n~ . 

In this paper we investigate ways in which the four numbers b9 a9 q5 and r 
of the division algorithm can be rearranged to give a terminating sequence of 
quotients q^ and remainders vi when the division algorithm is iterated. The 
combinatorial and number theoretic properties of some of the sequences so gen-
erated are of interest. 

ALTERNATE ALGORITHMS 

Line 90 of the BASIC program in Figure 1 provides the pattern for iterat-
ing the divisions in Euclidfs algorithm. The substitution made is that the old 
A becomes the new Bs and the old R becomes the new A. In the radix conversion 
algorithm, the old A never changes-, and the new B is the old QB We classify 
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possible algorithms by analyzing possible replacement lines for line 90 in the 
BASIC program. Naively, there are sixteen possibilities, summarized in Figure 
2, but ten of these are uninteresting in that their behavior is independent of 
the particular numbers a and b we start with. There is a single equation which 
repeats, a pair of equations which replace one another, or a sequence of equa-
tions that terminates to avoid a zero division. Of the six interesting cases, 
two are the radix conversion algorithm and Euclid's algorithm. The others are 
merely labelled in the table, and their analysis occupies the remainder of the 
paper. 
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Figure 2. Possibilities for Line 90 

ALGORITHM 3 

Iterate the division algorithm as 

b = q a + r±9 0 < r± < a 

qx = q2r± + r2, 0 < r2 < r1 

^ 2 ^ 3 2 3 3 2 

<?n _ 2 % - lTn - + r> -1» °  < Tn~l < Vn 

4n-l = ^ n - l + 0» Vn = 0. 

Stretching the algorithm out as long as possible is accomplished by taking 

1, rn 2, 1. Then the smallest possible choices for 
the q. would be given by 
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qn_1 = 0 1 + 0 = 0 
qn.2 = 0 2 + 1 = 1 
qn.3 = 1 3 + 2 = 5 
qn_h = 5 4 + 3 = 23 

Rn-i = Qn-i+ii + l ~ l 

This implies that qn_i = ̂ - - 15 and hence a = n and b = nl - 1. Thus9 we ob-
tain 

Theorem 1: If b < nl - 15 then Algorithm 3 terminates in <n steps. Algorithm 
3 terminates in exactly n steps when b = nl - 1 and a = n. 

Back substituting in Algorithm 3 gives an interesting pattern for the r's 
in terms of the q's. We have 

p. >.-l Qn-l'tfn* 

V (qn„2 ~ (^n-i^n))^n-3 

n-3 = ^ n - 3 " <?„ - 2 " ( ^ n - 1 ̂  ^ n - 1 } '<?„ - 2 » 

and so on back in an inverted continued fraction expansion5 to 

a - (b - (<7l - (q2 - (••• - (qR_2 - (<7B.1/<7„)/<7„.1)/---/?2)/?1. 
As a one-line summary of Algorithm 3 more in the spirit of radix conversion, 
we have 

b = r1 + a^1 = r1 + a(r£ + ^±q2) = ••• 

= rx + a(p2 + ^ ( P 3 + r2(...(rn.2 + ^ _ 3 ( ^ _ 2 + rn-!^)) •••))) • 

In the worst case b ~ nl - I, a = n of Theorem ls we generate here a rep-
resentation in the factorial number system (see [2]). 

ALGORITHM k 

Here the division algorithm is iterated as 

b = q±a + rl9 0 < r± < a 

V2 = ? 3 * 2 + P 3 5 ° < r3 K <?2 

rn-2 = <7„-l<7«-2 + P n - 1 » ° < P n - 1 < ^ n - 2 
P n - 1 = °<7n-l + P n> ° < * n < <7„ - 1 • 

This time the algorithm terminates just before the first zero division* i.e.s 
when qn = 0. It could be considered the dual of Algorithm 3 in that the roles 
of the A and B assignments in line 90 of the BASIC program are reversed, 

We build backwards to see what the smallest possible values are for b and 
a to give a certain number of steps before the algorithm terminates. It is 
clear that the sequence of rfs is strictly decreasing until the next to last 
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term. If qn is the first quotient that is 0S the smallest possible choice for 
q 7 is 1. Since jv, < q ,, that forces j» = 0. Then 

LYl — 1 ri ifi — ± n 

rn-l = <7n<7n-l + ^ = 0 1 + 0 = 0 , 
and s i n c e q „ > P , » <7 = 1 i s t h e s m a l l e s t p o s s i b l e c h o i c e . Then 

rn-2 = <?n-l?n-2 + P n - 1 = 11 + 0 = 1, 

and qn_3 > ̂ n-2 give s <7n-3 = 2 as the smallest possible choice. We continue 
building the sequences of q's and pfs backward from their nth values by 

**n-i. ~ tfn-i + ltfn-i Tn-i+± 

q . , = r . + 1. 

Writing f(jri) = v _ , the sequence of rfs is described by the recurrence 
f (0) = /(I) = 0, 

/(w) = (f(m - 2) + l)(/(m - 1) + 1) + /(77Z - 1) for m > 1. 

Writing q _ - gim) = /(m - 1) + 1, we obtain the neater recurrence 

gin + 1) = g(n)(g(n - 1) + 1). 

This is summarized in 

Theorem 2: Define #(n) for n > 0 by 

gr(O) = 0, gr(l) = 1, 

gin + 1) = g(n)(g(n - 1) + 1) for n > 1. 

Then the pair (2?„, an) for which Algorithm 4 first takes n steps to terminate 
is given by 

bn = g(n + 2) - 1, an = gin + 1). 
The sequence b±9 2?2, 2?3, ... begins 

1, 3, 11, 59, 779, 47579, 37159979, ... 

and the sequence a±, a2, a3, ... starts out 

1, 2, 4, 12, 60, 780, 47580, ... 

Neither of these sequences, nor any of their more obvious variants, seems to 
occur in Sloane's Handbook [5]. 

lim bn/an = °°  for Algorithm 4, but 

lim In bv/ln an = (1 + 51/2)/2. 
7-2->oo 

This can be seen by n o t i n g t h a t 
l im In bn/ln an = l im ln(Z?n + l ) / l n an = l im In g(n + 2 ) / I n gin + 1) 

= l i m ( l n g(n + 1) + ln(g(n) + l ) ) / l n g(n 4- 1) 

= 1 + l/lim(ln g{n 4- l)/ln g(ri)), 

and this process can be iterated to produce as many convergents to the contin-
ued fraction for (1 + 51/2)/2 as desired. The limit has to be well behaved by 
the inequality 

2F*-i < gin) < 2i?«-15 
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which is easy to establish for n ^ 1 by induction. 

ALGORITHM 5 

Iterate the division algorithm as 

b = q±a + r±9 0 < r± < a 

a = q^q^ + r^ 0 < 2?2 < q± 

q± = q3q2 + r3, 0 < r3 < q2 

Vn-3 = ^n-l^n-2 + V n ^ °  < Tn -1 < <?n-2 

q o=0<7 ., -f r , 0 < r < q 

The iteration should end just before a zero division, i.e., when qn = 0. 
^l* (?29 ••• f ° r m a strictly decreasing sequence out to qn_29 so the algorithm 
is guaranteed to terminate. Choosing rfs and q* s so as to build the longest 
possible algorithm for the smallest possible b and a, we find qn = 0 and qn_1 = 
1 forces vn - 0S since rn < ^n_ls and then ^n_2

 = <7n<7n-i + rn = 0J which cannot 
happen. ^n = 0, qn_1 = 2, and rn = 1 gives ^ n „ 2 = 0 2 + 1 = 1. Now, rn_1 = 0 
gives no trouble, and qn_3 = Qn-i^n-i + * ,„_ 3

= s 21+0 = 2, and all the other 
2»Ts = 0 give the <̂ fs satisfying the recurrence 

with ^n = 0, qn_1 = 2. Thus, we obtain, in general, that 

with the (& - 2)t h Fibonacci number in the exponent. This is summarized in 

Theorem 3: Writing (bn, an) as the pair for which Algorithm 5 first takes n 
iterations to finish, we have, for n ^ 2, 

bn = 2Fn~1 and an = 2Fn~2 . 
Thus, 

lim In bn/ln an = (1 + 51/2)/2. 

Successive substitution provides a one-line summary of Algorithm 5: 

b = ̂ a + r± = r1 + ^1(r2 + ^2^1) = ... 

= r1 + ^ ( P 2 + q2(r3 + (73(...(pn_1 + ^.i^)...)))-

Multiply this out to obtain the "mixed radix expansion" of b relative to the 
sequence of quotients g s ^ , q , ... 

b = r1 + 3?2(t71) + r3(q1q^) + ... + rn {qYq2. --^.^ . 

The relationship between systems of numeration and the division algorithm 
is explored by Fraenkel (see [2]). 

ALGORITHM 6 

The last variation we consider is 

b = q±a + rl9 0 < r± < a 

b = q2r1 + P2, 0 < P 2 < P X 
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b = q3r2 + P 3 S 0 < P 3 < P 2 

b = q , r 0 + P . 0 < r < P 
^•n-l n-l n - i 3 n - 1 n - 2 

b = W l + °> rn = 0. 
If the sequence of rfs is chosen to decrease as slowly as possible so that 

rn = 0, T
n„x ~ *' rn-z = 2, ..., then Z? would satisfy the system of congruences 

b = 1 (mod 2) 

2? = 2 (mod 3) 

b = n - I (mod n). 

The smallest such b is clearly l.c.m. (2935 . . . 3 n) - ls with a - n* For n ̂ 4 , 
however, there are smaller values of b that provide an algorithm terminating 
after n steps. Table 1 summarizes "worst case" behavior up to n = 16. 

Table 1. bn9 an that First Make Algorithm 6 Run for n Steps 

n 

1 
2 
3 
4 
5 
6 
7 
8 

&n 

1 
3 
5 
11 
11 
19 
35 
47 

an 

1 
2 
3 
4 
7 
12 
22 
30 

n 

9 
10 
11 
12 
13 
14 
15 
16 

bn 

53 
95 
103 
179 
251 
299 
503 
743 

dn 

32 
61 
65 
115 
161 
189 
316 
470 

We bound the number of steps that Algorithm 6 can take in the next result. 

Theorem ki Given b9 no value for a makes Algorithm 6 take more than 2b + 2 
iterations to terminate. 

Proof: Given b9 form the sequence R1, R2, .. . s Rb of remainders associated 
with dividing b by each of the numbers ls 2, ..., b. Applying Algorithm 6 to 
a pair (b9 a) is equivalent to picking out the increasing subsequence 

0 = Rni < Rn2 < " ' < Rn^ = Ra 

satisfying 

The sequence R , i? , . .. , i?& has its last 2? - [b/2] elements decreasing by 1 
(corresponding to quotients 1 in the divisions)s preceded by [b/2]- [b/3] ele-
ments decreasing by 2S preceded by [b/3]- [b/k] elements decreasing by 35 and 
so on back. Most of the larger values for J have no elements between [b/j] and 
[£>/j+l]. Choose k ~ [b1/2]s and consider as a worst case that there could be 
an increasing subsequence with 
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Rni- 0, Rn2= 1, . . . , Rn[bi/ij + i = [b1/z] 

and working backward from the other end, 

i?„ one of the last b - [b/2] elements 

R one of the next to last [b/2] - [b/3] elements 
m - 1 

Rn , between [b/[b1/2]] and [b/([b1/2] + 1 ) ] . 
m- [b1/2] + i 

This would yield an increasing subsequence of maximum length 

[b1/2] + 1 + [b/[b1/2]] < 2b1/2 + 2. 

One would expect that the longest sequences would be obtained from pairs 
(JDy a) such that the sequence of quotients q±s a2, q3 , . .. grows as slowly as 
possible and the sequence of remainders vn , Tn_19 Pn_2, ... also stays as small 
as possible. Keeping the remainders small is achieved by choosing b to satisfy 
a number of low-order congruences. The quotients1 size is controlled by the 
relative sizes of b and a. 

Theorem 5: Let {(bn, an)} be any sequence of ordered pairs of integers with 
the property that for any positive integer m there exists an N such thats when 
Algorithm 6 is applied to (bn, an) for n> N9 q^ = i for i = 1, 29 . . . 9 m. Then 

l im bn/an = e/(e - 1 ) . 
n-+ °° 

Proof: A p a i r (bs a) w i th q± = 1 s a t i s f i e s b = la + r 1 , w i th r < a . Hence, 
b < 2a , so b/a < 2 ; 
q2 = 2 implies b = 2v1 + r2 < 3r1 = 3(2? - a), so 2?/a > 3/2; 

a3 = 3 implies b = 3r2 + P3 < 4i>2 = 4(2a - 2>) > so 2?/a < 8/5; 

qh = 4 implies & < 5(42? - 6a), so £/a > 30/19; 

q5 = 5 implies 2? < 6 (24a - 152?), so £ /a < 144/91. 

Continue this procedure to build a sequence of fractions 

if(n)/g(n)} = 2/1, 3/2, 8/5, 30/19, 144/91, 840/531, 5760/3641, ... 

satisfying 

f(2)/a(2) < /(4)/a(4) < ••• < b/a < ••• < f(3)/a(3) < f(l)/a(l). 

It is easy to establish that f(n) = (n + l)(n - 1)!. 

gin) arises as the sum of coefficients of b in the inequalities generated 
from the assumptions 

Vn+l = n + l a n d ^n = n» 

This sequence of coefficients, 

{cn} = 1, 1, 4, 15, 76, 455, ..., 

has arisen in the literature before in an analysis of the game of Mousetrap 
[6], and satisfies the recurrence 
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The analogy with subfactorials is compelling. See the note by Rumney and 
Primrose [4] for an analysis of the sequence {un}9 which satisfies 

^n-\ = f^ " 9M • 
A combinatorial interpretation of this sequence in terms of consecutive ascend-
ing pairs of numbers in permutation is given in [1], Properties of {un} can be 
used to establish the recurrences 

n-l 
g(n) = ng(n - 1) + £ (~lf+1g(n - i) 

i = 2 

= (n - l)g(n - 1) + (n - 2)g(n - 2) 

and the formula 

g{n) = (n + 1)(n - 1)!(1 - 1/2! + 1/3! - -.. + (-l)n+1/(n + 1)!). 

Since the sum is a truncated series expansion for 1 - 1/e, the theorem is es-
tablished. 

Examples of pairs (b, a) for which Algorithm 6 takes a relatively large 
number of iterations to terminate can be constructed by starting with two con-
secutive convergents alb and old in the continued fraction expansion of 

eUe - 1) = [1, 1, 1, 29 1, 1, 4, 1, 1, 6, ...] 

and then choosing positive integers x and y so that the numerator of the in-
termediate fraction 

{ax + cy) I (bx + dy) 

satisfies a number of low-order congruences. 
Algorithm 6 provides a weaker statement about divisibility than Euclid's 

Algorithm does. It is easy to show that, if Algorithm 6 ends at the nth step 
with b - qnrn_1 + 0, then gcd(Z>, a) divides Pn_19 which in turn divides b. 

The kth quotient qk is given in terms of b9 a, and earlier quotients by 

qk = [b/(b - qk_1{b - qk„2(b - •«• q2(b - q^a) •••)))]-

rn_1 = 1 is a sufficient condition for gcd(bs a)= 1. It is not necessary, 
because, for example, b = 9999 and a = 343 ends with rn.1 = 9 . 

The iterations in Algorithm 6 say that b = ^k+1 (mod rk). Thus, we are led 
to the following number theory problem: Given n, for each decreasing sequence 
of positive integers 

find the smallest positive number b satisfying 

b = x2 (mod xx) 

b = x3 (mod x2) 

b = xn (mod x n _ 1 ) , 

if a solution exists. A solution is guaranteed to exist if, for example, the 
numbers x19 x2S •..., xn_± are pairwise relatively prime. If a solution does 
exist, it is unique (mod lem {x±9 x2, . .., xn_1).) . What Is the smallest solu-
tion b among all possible decreasing sequences of n terms? It is the same b 
as first makes Algorithm 6 take exactly n steps to terminate. 
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