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1. INTRODUCTiON 

The Pellian sequence {xn9 n = 1, 2, 3, •••} is defined by the rule: xn is 
the least positive integer x such that nx2 + 1 is the square of an integer; if 
no such x exists, xn is taken to be 0. Briefly, xn is the least positive solu-
tion to the Pell equation nx2 + 1 = y2. The sequence behaves irregularly; the 
first few terms are 

0, 2, 1, 05 4, 2, 3, 1, 0, 69 3, 2, 180, 4, 

while x = 1766319049. It is easy to see that if n is a perfect square, then 
xn - 0. The converse is also true: it is shown in [2] that for positive non-
square n> if Vn has continued fraction expansion [aQS a19 , . . , <%%] 9 then the 
convergent p2^-1/^2^-1 provides a solution # = q2^-13 2/ ~ P2/C-1 to t^ie ^ e H 
equation nx2 + 1 = z/2 ([2] also serves as a good reference for terminology and 
facts about continued fractions used in Section 3 of this note) . It is also 
easy to show that xn = 1 if and only if n is one less than a square. In this 
note, a method will be described which produces all the occurrences of any in-
teger m > 1 in the Pellian sequence. 

2. POSSIBLE OCCURENCES OF m 

It is not difficult to restrict the possible occurences of m in the Pelli-
an sequence to a small list. The method as given in [1] is as follows: 

Suppose ?7? is an odd integer greater than 1 and that xn = m. Say run2 + 1 = 
y2 for a positive integer y. Since run2 = (y - 1) (y + 1) , and m is odd, while 
y - 1 and y + 1 share no common odd factors, there must be positive integers 
a, b with (a, b) = 1, m = ab9 and such that a2 \(y + 1) and b2 \(y - 1). Hence, 

n = (y2 - l)/m2 = ((z/ + l)/a2)(Qy - l)/b2)* 

If 77? is even, write m = 2eM with M odd. In this case, if run2 + 1 = y2, 
then z/ must be odd and so 

n22e'2M2 = {{y + l)/2)((z/ - l)/2). 

The factors on the right are consecutive integers. It follows that 

77!/2 = 2e_1M = ab 

with (a, b) = 1 and such that a2 \ (y + l)/2 and b2\ (y - l)/2. Thus, 

n = ((z/ + l)/2a2)((y - 1)/2Z^2). 

So the only possible occurrences of m in the Pellian sequence are found as 
follows: 
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1. For odd 777 write m as a product ab with (a, b) = 1 in all possible ways. 
For even m write mil as a product ab with (a, Z?)= 1 in all possible ways. 

2. For each such factorization ab find the positive solutions to 

y E -1 (mod a2) 

z/ E 1 (mod b2) 

if 777 is oddj or to 

y E -1 (mod 2a2) 

y E 1 (mod 2b2) 

if m is even. 

Then m can occur in the Pellian sequence only for the numbers n = (y2 - I)/m2* 
For example, if m = 35, there are four systems to solve: 

1. y E -1 (mod l2) 2. y = -1 (mod 52) 
z/ E 1 (mod 352) z/ E 1 (mod 72) 

3. z/ = -1 (mod 72) 4. z/ = -1 (mod 352) 
z/ E 1 (mod 52) z/ E 1 (mod I2) 

The solutions are, respectively, 

1. y = 1 + 352t, 2. z/ = 99 + 352t, 

3 . z / = 1126 + 352£, 4, y = 1224 + 352t, 

each with t > 0. 
Each solution y proivdes a candidate n = (z/2 - l)/352

9 where xn = 35 is 
possible. These candidates for the four solution sets are, respectively (with 
t > 0), 

1. (2 + 352t)t = 0, 1227, 4904, ..., 
2. (4 + 72t)(2 + 52t) = 8, 1431, 5304, ..., 
3. (23 + 52t)(45 + 72t) = 1035, 4512, 10439, ..., 
4. (1 + t)(1224 + 352t) = 1224, 4896, 11019, .... 

In fact, xn is 35 for all the listed values of n except the 0 of solution 
1 (x0 is not even defined) and the 8 of solution 2 (xQ = 1 since 8 is one less 
than a square). Thus, while the method produces all possible occurrences of 77? 
in the Pellian sequence, some exceptional values of n can creep into the lists. 

3. EXCEPTIONAL VALUES 

When 777 is odd, the two trivial factorizations of 772, 

777 = (1)(777) a n d 777 = (777) ( 1 ) , 

give exceptional values of n which are easy to determine. For the first fac-
torization, the system to solve is 

y E -1 (mod l2) 
y E 1 (mod 77Z2) , 

wi th s o l u t i o n s y = 1 + 7772t, t > 0 , which y i e l d s c a n d i d a t e s 

n = (y2 - l)/m2 = (2 + m2t)t« 

Of course t = 0 gives an exceptional value of n. However, all other values of 
t are good. To see that is so, it must be shown for each t > 0 that, if x is a 
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positive integer and (2 + m2t)tx2 4- 1 = y 2
 9 then x > m. From (2 + m2t)tx2 + 1 

= z/2, it follows that 

2tx2 + I = y2 - (mtx)2 > (mtx + I)2 - (mtx)2 = 2mtx + 1, 
which shows x ^ 777. 

The same reasoning shows that the system 

y E -1 (mod ?772) 
2/ = 1 (mod l2) 

yields no exceptional values of n* 
Similarly, for even 77?, the factorization (1) (777/2) of 7?7/2 yields one excep-

tional value of n (namely, n ~ 0) , while the factorization (777/2) (1) gives no 
exceptional values. 

For the nontrivial factorizations of m, the exceptional values will be de-
termined by noting a peculiar feature of the continued fraction expansions of 
Vn for the candidate n values produced by each of the systems: the expansions 
all share common "middle terms.M For example, looking at the solutions to sys-
tem 2 in the example above, the following CFEs are found: 

x/8 = [2, TTT] = [2, 1, 4, 1, 4, 1, 4]; 

/1431 = [37, 1, 4,T, 4, 74]; 

v/5304 = [72, 1, 4, 1, 4, 1, 144]. 

To see why this is so, let us suppose m is odd and 777 = ab, with a, b > ls 
(a, b) = 1. Let J be the least positive solution of 

y E -1 (mod a2) 
,2/ E 1 (mod 2?2) , 

so t h a t a l l p o s i t i v e s o l u t i o n s a r e given by y = J + 77?27j, £ > 0 . For each £ ^ 
0 , put 

Tlt = ((J + 7772t)2 - 1)/77Z2, 

the tth candidate n. If it is observed that 

[y/n~t] = [ \ / (J + 7??2t)2 - I/772] = [W(Y + 77?2t)2 - i]/m] 

= [(Y + m2t - l)/777] = [J/777] + mt, 

where [•] denotes the greatest integer function, it is not difficult to verify 
that the sequence Vn7 ~ l^ntl » t = 0, 1, ... is monotone increasing and con-
verges to J/777 - [J/77?]. Thus, for all t > 1, we have 

v^" - [VnJ <V~t~ W~t] < Y/m - [J/772]. 

Now, x = 772, y = J is certainly a solution to the Pell equation n0x2 + 1 = 
2/2, and, consequently, Y/m must be a convergent of the CFE of VTIQ ; in fact, it 
can be said that 

v ^ 7 = iq0» <7i» • • • > ^ ' 2qoi> 
where k is odd, and qQ = [J/777], since [J/772] is the greatest integer in Vn^ and, 
finally , J/77? has CFE [q 0, q1, . .., ^ ] . The period of the expansion of Vn^ is 
not necessarily k 4- 1, but must be some divisor of k + 1. In addition, it is 
known that 2q is the largest integer appearing in the CFE of y/n^• 

So the CFEs of 
y/nl - [v̂ 2~] = [0, q19 ..., ̂ , ...] 

and 
J/777 - [J/777] = [ 0 , q19 . . . , <?fc] 
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are identical out to the entry qk . Since the numbers Vn7 - l^nt] are trapped 
between these two values, they also must have continued fraction expansions 
which begin with [0, ql9 q2, . .., qk ]. Furthermore, since x = m certainly pro-
vides a solution to the Pell equation ntx2+ 1 = z/2, it follows that the CFE of 
^/n^ has the form 

'[Q» q19 . - • » qk> 2Q]S where Q = [Vn7] . 

Since the values ql9 q2* > ^ * qk are all less than 2^0, and so certainly less 
than 2Qs it must be that the period of the CFE of Vrit is exactly k + 1; hence, 
m is the least positive x that satisfies the Pell equation n^x2 + 1 = y2

 9 which 
proves that m occurs in the Pellian sequence at every n-t excepts possibly, the 
value n0. 

In a similar fashion9 it is found for even 777 that each nontrivial factori-
zation of m yields at most one exceptional value of n9 namely the value 

n0 = (J2 - l)/m2s 

where J is the least positive solution for the system. 
Thuss the following theorem has been established. 

Theorem 1: For m > 1 odd9 write m = ab with (a, b) = 1, and let Y be the least 
positive solution of the system 

y = -1 (mod a2) m 

y = 1 (mod Z?2). W 

Then m = xn5 the rzth term of the Pellian sequences where n is given by 

n = ((J + m 2t) 2 - l)/m2, for all t > 1, 

and possibly for t = 0 as well. This accounts for all occurrences of m. 

For m > I evens write m/2 = a& with (a9 2?) = 1, and let I be the least 
positive solution of the system 

y E -1 (mod 2a2) ,«v 
y = 1 (mod 2Z>2). ^ j 

Then m = xnS the nth term of the Pellian sequence, where n is given by 

n = ((J + m 2£) 2 ~ l)/m2, for all t > 1, 
and possibly for t = 0 as well. This accounts for all occurrences of m. 

It is natural to ask exactly when t = 0 will yield an exceptional n. While 
a general solution of this problem appears to be difficult, for some particular 
nontrivial facotrizations ab of m (or m/2), the answer can be provided. For 
example, when m is odd, a factorization of the form a(a + 2) always gives an 
exceptional value of n (as was seen for the case 35 = 5 9 7 in the earlier exam-
ple). To see why this is true, suppose a = 2k + 1 and b = 2k + 3. The least 
positive solution to the system 

y E -1 (mod a2) 
y E 1 (mod b2) 

is 
J = (fc + 2)(2k + l)2 - 1 = &(2& + 3) 2 + 1, 

which provides 7 us wi th 

n = fc(fc + 2) = (fc + I ) 2 - 1, 

always one less than a square. Hence, xn = 1, and this n is exceptional. How-
ever, such factorizations do not account for all exceptional values of n. For 
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77? = 1197 = 19 • 63, the least positive solution to 

y = -1 (mod 192) 
2/ = 1 (mod 632) 

is Y = 3970, which yields n = 11. But x1± = 3 and not 1197. Likewise, it can 
be shown that if m is even and 7??/2 is factored as (777/4) (2) (assuming-777 is a 
multiple of 4), then for the n produced, xn - 2, and not 772. Again there are 
other factorizations which yield exceptional values of n. 
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