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This note will generalize results obtained by Wyler [5] concerning periods
of second-order recurrences.

Let » 2 2 and let (u) be an rth-order linear recurrence over the rational
integers satisfying the recursion relation

, _ r+1
Untp = Aillyip_1 = Aolyip_p + o+ + (=1) ArUy (D

with initial terms Ug = Uy = +++ = Up_p = 0, Up_7 = 1. Then (U) is called a
unit sequence with coefficients a;, a3, ..., an. For a positive integer M, the
primitive period of (u) modulo M, denoted by K(M), is the least positive inte-
ger m such that u,4+p,m = U, (mod M) for all nonnegative integers #» greater than
or equal to some fixed integer n,. It is known that the primitive period mod-
ulo M of a unit sequence (u#) is a period modulo M of any other recurrence sat-
isfying the same recursion relation (see [4], pp. 603-04). The rank of (u)
modulo M, denoted by k(¥), is the least integer m such that u,4, = Si, (mod M)
for some residue s and for all integers »n greater than or equal to some fixed
nonnegative integer 7,. We call s the principal multiplier of (u) modulo M.
1f (ap, M) = 1, then it is known from [1] that (u) is purely periodic modulo M
and K(M)[k(M). Furthermore, if (a,, M) = 1, Carmichael [1] has shown that the
principal multiplier s is a unit modulo M and K(M)/k(M) = E(M) is the exponent
of the multiplier s modulo M. 1In this paper, we will put constraints on K (M)
given k(M) and the exponent of a, modulo M.

Our two main results are Theorems 1 and 2. Theorem 2 is a refinement of
Theorem 1.

Theorem 1: Let (u) be a unit sequence with coefficients a,, a,, ..., a,. Let
M 2 2 be a positive integer such that (a,, M)=1. Let % be the exponent of a,
modulo M. Let k = k(M) and K = K(M). Let H be the least common multiple of %
and k. Then H[K and K[rH.

Theorem 2: Let (u) be a unit sequence with coefficients a;, a,, ..., ap. Let

M > 2 be a positive integer such that (a,, M) = 1. Let h, k, K, and H be de-
fined as in Theorem 1. Let

where the p, are distinct primes and a; = 1. Let
7
n B " Y-
h=lIlp)h', k= Il p.°) k',
i=1 " i=1 1

*This note is based partly on results in the author's Ph.D. Dissertation,
The University of Illinois at Urbana-Champaign, 1985.
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where B; 2 0, vy; 20, and (h', r) = (k', r) = 1. Let j vary over all the in-
dices 7, 1 €1 < n, such that B; > v;,. Let ¢ = 1 if there is no subscript 7
such that B; > y;. Otherwise, let

= Il pY

ER)
Then

cH|K

and

K|k(zH/K, $(),
where ¢(M) denotes Euler's totient function.

To prove Theorems 1 and 2, we will need the following lemmas.

Lemma 1: For the unit sequence (u) given in (1), define the persymmetric de-
terminant

n Uy +1 Uptr-1
() n+1l un+2 un+1ﬂ
D, (u)
un+r—1 un+1" un+2r—2

Then
D& (W) = 2,0 w).

Proof: This is Heymann's Theorem and a proof is given in [2, ch. 12.12]. =&

Lemma 2: Let k = k(M). Suppose

Z Uppp-p = 0 (mod M)

m
and (gq,, M) = 1. Then k|m. Furthermore,
r

Upivn = “£+r—1un (mod M) (2)
and for all non-negative integers u,
Upyp_y = af (mod ). 3

In particular, if ¢ is the principal multiplier of (u), then

st = aﬁ (mod M) .
Proof: Suppose m = tk + d, where 0 < d < k. Since (u) is purely periodic mod-
ulo M, it follows that, for 0 < mn < »r - 2,

0 = Upyn = Slprpnog = 8 Upen-ok = <00 = Stupy, g = 8tug,, (mod M),

where s is the principal multiplier of (u) modulo M. However, if d > 0, this
is impossible since s is a unit modulo M and, by definition, k is the smallest
positive integer J such that u; =0 (mod M) for 0 <m<r-2. Thus, d =10
and k|m

We now note that

Umin = Upip-1Uy, (mod M) (4)

for 0 S n<»r~-1. It follows from the linearity of the rth-order recursion
relation defining (u) that (4) holds for all nonnegative integers #, and w,,,._;
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is a multiplier modulo M, though not necessarily principal, of (u). By apply-
ing congruence (4) repeatedly, we obtain

Umitn = Umtmi-1)+n)= Umtr-1%mi-1)+n= Unir-1%m+ (n(i - 2)+n)
—_ 2 _ — ;
S Uppp-1Um@-2)4n = 0 = Uppp-1ky, (mod M),
and congruence (2) holds.
To prove (3), we note that since u, = u
easily calculates that

il

1 * = Uyin_, = 0 (mod M), one

D(y) = (-1)TE-D/2yr (mod M) .

m r-1
Moreover, since u, = #; = +++ = Up_, =0 and u,_; = 1,
D) = (-1,

By applying Lemma 1 m times, we now obtain

@)\ = -1 - (r _ -

Dy = (-1 B2y = g"p(P(w) = al(-1)TC D2 (mod M),
and congruence (3) is seen to hold. Finally, noting that s = Upypo1 (mod M),
the lemma now follows. ®

We are now ready for the proofs of Theorems 1 and 2.
Proof of Theorem 1: Note that Ugppoy = Up_y = 1 (mod M). By Lemma 2,
— K =
u1§’+r_1 = a, =1 (mod M).

Thus, K is a multiple of %4. Since k|K, K is also a multiple of H. On the other
hand, by Lemma 2,
-z oy _5, =0 (mod M)

Uy = Upge1 = ° rH+p

and
= r = H =
Upgrpoq = Ugep_1= ap =1 (mod M).

Hence, rH is a multiple of K and we are done. ®&

Proof of Theorem 2: By Theorem 1, K|rH. Since K=kE(M) and E(M)|¢p(M), it fol-
lows that

K|k(eH/k, QD).

For a given index j, let §; = a; + Bj. Then it follows from the defini-
tions of ¢ and H that

6j | cH  and 5j | &,

where p¥ ”N means & is the highest power of p; dividing N. Since H]K by Theo-
rem 1 and cleH, it suffices to prove that 1f P; is a prime dividing ¢, then

KJ’(TH/pj).
By Lemma 2, we thus need to show that
U(rlifp,) +7-1 Z 1 (mod M).

Note that pbk[H since Bj > vj. Thus, PH/Rf= kN for some integer N. Moreover,
r|N since IH/R7 By Lemma 2,

_ - N _ P N/r
u(rH/pj)+r—1 T Umvtrp-1 T Ugsrp-1Up-1 T <7’tk+1r'—1)

n

MM = (@' = g (mod M.
Now,
Bj-l Bj
P, I (H/Pj), P I 7.
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Thus,

T
u(PH/Pj)+r—1 = ap/p‘j Z 1 (mod M).

Consequently, Kj’(PH/Ri) and we are done. ®

1.
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