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This note will generalize results obtained by Wyler [5] concerning periods 
of second-order recurrences. 

Let r ^ 2 and let (u) be an rLh-order linear recurrence over the rational 
integers satisfying the recursion relation 

un + r = alun+r-l ~ a2un + r-2 + • • • + ( - 1 ) CLTUn ( 1 ) 

with initial terms u0 - ux = ••• = ur_2 = 0, ur_1 - 1. Then (u) is called a 
unit sequence with coefficients al5 a25 -.., ar. For a positive integer AT, the 
primitive period of (u) modulo AT, denoted by K(M), is the least positive inte-
ger m such that un + m = un (mod AT) for all nonnegative integers n greater than 
or equal to some fixed integer n0. It is known that the primitive period mod-
ulo M of a unit sequence (u) is a period modulo M of any other recurrence sat-
isfying the same recursion relation (see [4], pp. 603-04). The rank of (u) 
modulo M, denoted by k(M), is the least integer m such that un + m - sun (mod AT) 
for some residue s and for all integers n greater than or equal to some fixed 
nonnegative integer nQ. We call s the principal multiplier of (u) modulo AT. 
If (ar, AT) = 1, then it is known from [1] that (u) is purely periodic modulo M 
and K(M) \k{M) . Furthermore, if (ar, AT) = 1, Carmichael [1] has shown that the 
principal multiplier s is a unit modulo M and K(M) /k(M) = fi^AT) is the exponent 
of the multiplier s modulo M. In this paper, we will put constraints on K(M) 
given k(M) and the exponent of av modulo AT. 

Our two main results are Theorems 1 and 2. Theorem 2 is a refinement of 
Theorem 1. 

Theorem 1: Let (n) be a unit sequence with coefficients al9 a2> ..., ar. Let 
M ̂  2 be a positive integer such that (ar, AT) = 1. Let 7z be the exponent of aP 

modulo AT. Let A: = A: (A?) and Z = K(M) . Let # be the least common multiple of In 
and k. Then #|z and z|i>#. 

Theorem 2: Let (w) be a unit sequence with coefficients a19 a2, ...9aP. Let 
M > 2 be a positive integer such that (ar, AT) = 1. Let 7z, fc, Z, and # be de-
fined as in Theorem 1. Let 

r = ft P% 
i = i ^ 

where the p. are distinct primes and a^ ^ 1. Let 

h = (ft p^)hf, k =(n pAkr
9 

*This note is based partly on results in the author's Ph.D. Dissertation, 
The University of Illinois at Urbana-Champaign, 1985. 
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where 3i > 0, yi > 0, and (/V, r) = (kr, v) = 1. Let j vary over all the in-
dices i, 1 < i < n, such that 3^ > yi . Let c = 1 if there is no subscript i 
such that 3i > Yi• Otherwise, let 

a = n ?y • 
Then 

and 
oH\K 

K\k(rH/k, $(M)), 

where (j)(Af) denotes Eulerf s totient function. 

To prove Theorems 1 and 2, we will need the following lemmas. 

Lemma 1: For the unit sequence (u) given in (1), define the persymmetric de-
terminant 

Then 

D{:\U) 

un + l 

Un + 2 

un+r-l 

D^\(u) = arDl'\u). 

Proof: This is Heymann's Theorem and a proof is given in [2, ch. 12.12], 

Lemma 2: Let k = k(M) • Suppose 

um ~ um+i = ••• = um+r-2 = 0 (mod M) 

and (apS Af) = 1. Then k\m* Furthermore, 

and for all non-negative integers n» 

uZ+r-! = a™ (mod Af). 

In particular, if s is the principal multiplier of (u), then 

sr = a\ (mod Af). 

Proof: Suppose m = tk + d} where 0 < d < k. Since (u) is purely periodic mod-
ulo Af, it follows that, for 0 < n < r ~ 2, 

(2) 

(3) 

0 um + n- k ~ s um + n- 2k 
L'Ud+n (mod A/) ., 

where s is the principal multiplier of (u) modulo Af. However, if d > 05 this 
is impossible since s is a unit modulo Af and, by definition, k is the smallest 
positive integer j such that u^.^ = 0 (mod Af) for 0 < n < r - 2. Thus, d = 0 
and /c|w. 

We now note that 

um + n E Wm+r-lM* (mod M ) ( 4 ) 

for 0 < ?z < r - 1. It follows from the linearity of the rth-order recursion 
relation defining (u) that (4) holds for all nonnegative integers n, and um+r_1 
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is a multiplier modulo My though not necessarily principal, of (u). By apply-
ing congruence (4) repeatedly, we obtain 

umi + n ~ Um + (m(i- l) + n) ~ Um + r-ium(i - 1) + n = Um + r- lUm+ (m(i - 2)+ n) 

= u^+r_1umii_2)+n = ... E ̂  + p _ ^ n (mod A/), 

and congruence (2) holds. 
To prove (3), we note that since um E um + 1 E -°> E um+r_2 E 0 (mod M), one 

easily calculates that 

Moreover, since u0 = u1 = ••• = uP_2 = 0 and ur_1= 1, 

By applying Lemma 1 m times, we now obtain 

D^\u) = (-l)J,(l'-1)/2<+2._1 E am<>(w) = <(-ir(*-1)/2 (mod M), 

and congruence (3) is seen to hold. Finally, noting that s = w, . (mod M), 
the lemma now follows, a 

We are now ready for the proofs of Theorems 1 and 2. 

Proof of Theorem 1: Note that uK _ E ur_. = 1 (mod M) . By Lemma 2, •£+*>- i - "-r-i 

UK+r-lE al E X (m° d M>« 
Thus, Z is a multiple of h. Since k\Ks K is also a multiple of #. On the other 
hand, by Lemma 2, 

and 
"rff+i-l E <+r-lE <** E 1 (mod M>°  

Hence, r# is a multiple of K and we are done. • 

Proof of Theorem 2: By Theorem 1, K\rH. Since K=kE{M) and #(M) | (J)(M) , it fol-
lows that 

K\k(rH/k5 cf>(A0). 

For a given index j, let Sj = a,j + 3j . Then it follows from the defini-
tions of c and H that 

p?J' ||c# and p?J ||r#, 

where p? || # means a: is the highest power of p- dividing #. Since H\K by Theo-
rem 1 and CH\FHS it suffices to prove that if p. is a prime dividing c, then 

K\ (rH/pd). 
By Lemma 2, we thus need to show that 

u(rH/p.)+r~l f l (mod /¥) • 

Note that Pjk\H since $j > Yj. Thus, rH/p. = kN for some integer N. Moreover, 

-3 
r 

r\N s i n c e k\H/p-. By Lemma 2 , 
U(vE/p. )+r-l = W W ! / + P - I = W£ + r - l W i > - l = ( % + P - I ) 

= ( ^ ) * / p E ( a* )^ 2 1 = aEJv* (mod M). 
Now, 

pBj'_1l (ff/p.), pMfc. 
J 7 7 
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Thus, 

U(rH/p-)+r-l E aVV" ? l (mod M} ' 
Consequently, K\ (rH/p.) and we are done. & 
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