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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

F
n + 2 = Fn+1 + Fn> Fo = °> Fl = 1 

and 
Ln + 2 = Ln + 1 + Ln> LQ = 2 ' L l = l ' 

PROBLEMS PROPOSED SN THIS ISSUE 

B-604 Proposed by Heinz-Jurgen Seiffert, Berlin, Germany 

Let c be a fixed number and un + 2 = cun+1 + un for n in N = {0, 19 2, ...}. 
Show that there exists a number h such that 

Un+k = hUn+3 " hun+l + Un f o r n i n N' 

B-605 Proposed by Herta T. Freitag, Roanoke, VA 

Let 
n 

S(n) = £ L2n + 2i_1. 
i = l 

Determine the positive integers n, if any, for which S(n) is prime. 
B~606 Proposed by L. Kuipers, Sierre, Switzerland 

Simplify the expression 

£2+i + 2£ ,L M1 - 25F2 + L2
 1 . 

n + l n -1 n + 1 n n - 1 

B-607 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Let 

°" = £0\k)FkLn-k-

Show that Cn/2n is an integer for n in {0, 1, 2, ...}. 
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B-608 Proposed by Plero Filipponi, Fond. U. Bordoni, Rome,, Italy 

For k = {2, 39 ...} and n in N = {09 1, 29 . . . } , let 

, rc+ 7c- 1 

denote the quadratic mean taken over k consecutive Fibonacci numbers of which 
the first is Fn . Find the smallest such k > 2 for which Snak is an integer for 
all n in 71/. 

B-609 Proposed by Adina DiPorto & Piero Filipponi, 
Fond, U. Bordoni, Rome, Italy 

Find a closed form expression for 

k = i 

and show that Sn E n(-l)n (mod Fn) . 

SOLUTIONS 

Nondivisors of the Ly. 

B"580 Proposed by Valentina Bakinova, Rondout Valley, NY 

What are the three smallest positive integers d such that no Lucas number 
Ln is an integral multiple of dP. 

Solution by J. Suck, Essen, Germany 

They are 59 89 10. Since l\Lns 2\LQS 3\L2S 4|L3, 6|L6S l\Lh, 9|L69 it re-
mains to show that 5\Ln and 8J(Ln for all n - 09 1, 2, ... . This follows from 
the fact that the Lucas sequence modulo 5 or 8 is periodic with period 2, 19 3, 
4 or 2, 1, 39 49 79 39 29 59 794 s 3 97 9 respectively. 

Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Filipponi, Herta T. 
Freitag, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Lawrence Somer, and the 
proposer. 

Third Degree Representations for F 

B-581 Proposed by Antal Bege, University of Cluj, Romania 

Prove that, for every positive integer n9 there are at least [n/2] ordered 
6-tuples (a, b5 o5 x9 y3 z) such that 

Fn = ax2 -\- by2 - cz2 

and each of a, b9 c3 xs y3 z is a Fibonacci number. Here [t] is the greatest 
integer in t . 

Solution by Paul S. Bruckman, Fair Oaks, CA 
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We first prove the following relations: 

TP = TP TP 2 . L . TP TP ^ — TP jp 2 . / 1 \ 
2n r2s+lrn-s+l r2s n-s r 2s -1 n - s -1 ' v J 

F = F F 2 + F F 2 - F F 2 . (2) 
L2n+1 L2s + 2±n~s+l L2s + lLn-s ±2sLn-s-l9 v^ ' 

v a l i d f o r a l l i n t e g e r s s and n. 

Proof of (1) and ( 2 ) : We u s e t h e f o l l o w i n g r e l a t i o n s r e p e a t e d l y : 
FuFv = ^ F 2 v + u - (-V"F2v-u - H-lfFu), (3) 

which i s r e a d i l y p roven from t h e B i n e t f o rm u la s and i s g i v e n w i t h o u t p r o o f . 

M u l t i p l y i n g t h e r i g h t member of (1) by 5 , we a p p l y (3) t o t r a n s f o r m t h e 
r e s u l t a s f o l l o w s : 

(F2n+3 + F
2n-*s + i + 2 ( - D " - 8 F 2 8 + 1 ) + (F2n - F2n_h8 - 2(-l)n-sFZs) 

~ (F2n-3 + F2n^s-1 + 2(-l)"-SF2s_1) 

= (F - F + F ) + (F - F - F ) 
K 2n+3 2n-3 2n J v 2n-ks+l 2n-hs 2n-hs-lJ 

+ 2(-l)"-s(F2s + 1 -F2B - F 2 s _ x ) 
= ^3F2n+ Fz„) + 0 + 0 = 5F2n. 

This proves (1). 
Likewise, multiplying the right member of (2) by 5 yields: 

(F - F + 2(-l)n~sF ) + (F + F - 2(-l)n~8F ) 
KL 2n + k L 2n-hs ^ ^K L) 2s + 2J ^ y 2n + l L 2n -ks -1 ^ V x / L 2s + lJ 

- (F2n-2 ~ F2i^-hs-2 + 2 ( - l ) " " F2s) 

= ^2n + h ~ &\n -2 + F2n+l) ~ (^2n -hs ~ ^'2n -hs - 1 ~ ^2n -ks - 2 / 
+ 2 ( - l ) " - e ( F 2 s + 2 - F2s+l - Fls) 

= (L,F2n+1 + F2n + 1) - 0 + 0 = 5F2n+1. 

T h i s p r o v e s ( 2 ) . 

We may combine (1) and (2) i n t o t h e s i n g l e f o r m u l a : 

F = F F2 + F F2 - F F2 , (4) 
n x 2s + l + on m -s + 1 2s + on m-s 2s -1 + on m -s -1 ' v ^ ' 

where 

m-= mm, 0 B E ( i . ( - i n / 2 . { J ; " ^ 
We see that the 6-tuples 

(a, b9 e, x9 y9 z) 

~ ^ 2S + 1+ on> 2s + on* 2s -1+ on' ^m-s+1* ^m-s9 ^m-s-1' ' ' 

are solutions of the problem3, as s is allowed to vary. For at least the values 
s = 0, 1, ...9m - 1, different 6-tuples are produced in (5). Hence, there are 
at least m = [n/2] distinct 6-tuples solving the problem, 

Also solved by the proposer. 
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Zeckendorf Representations 

B-582 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

It is known that every positive integer N can be represented uniquely as a 
sum of distinct nonconsecutive positive Fibonacci numbers. Let f(N) be the 
number of Fibonacci addends in this representation, a = (1 + v5)/2, and [x] be 
the greatest integer in x« Prove that 

f([aF2]) = [(n + l)/2] for n = 1, 2, ... . 

Solution by L. A. G. Dresel, University of Reading, England 

S i n c e 

F2 - F2
 0 = (F - F J (F + F ) = F L = F 

T r-2. v r v-zJK r v-2J v - \ v - \ 2 ( r - 1 ) 
we h a v e , summing f o r even v a l u e s v = 2£ , t = 19 25 . . . , 777, 

F2m 0 = F ^ _ 2 + Fhm _ 6 + e ° ° + F2 s 

and summing f o r odd v a l u e s r = 2 t + l 9 t = 1, 2 , . . . 5 / 7 ? , 

n 2m+l L r km ^ rhm-h ^ ^ rk9 

Let a = h(l + A ) and & = %(1 - >/5), t h e n 

a F 2 g = ( a 2 s + 1 - a Z ? 2 s ) / / 5 = F2g + 1 + (6 - a)b2s //5 = F2s + 1 - b 2s 

Applying the formula for F 2 , we obtain 

aF? = Fu , + Fu , + •••+ F - O ^ - 2 + Z^"6 + •'••+ £2) 
2m km -1 4m - 5 3 

and since 0 < (b2 + b6 + •• • + b^'2) < b21 (1 - £4) < 1, we have 

\oF 2 1 = F 4- F + • • • + F - 1. 

Putting F3 - 1 = F2 , we have a sum of 77? nonconsecutive Fibonacci numbers. Sim-

l l a r l Y S ^ 2 ^ = ^ + i + F | | w _ 3 + . . . + ^ + a _ ( ^ + . . . + Z , B + f c , ) f 

0 < (fc* + £8 + ... + fe^) < 6V(1 ~ i1*) < /32s 
and 1 < a - b2 < 2S 
so that 

[aF2 ] = F + F + • • • + F,, + F1 , 
L U i 2 m + l J 4 m + l 4m - 3 5 1 

which is the sum of (77?+ 1) nonconsecutive Fibonacci numbers. Finally, for n = 
1, we have 

[aF2] = 1 = F±. 

Thuss in all cases, we have 

f([aFn
2]) = [(n + l)/2], w = 1, 2, ... . 

Also solved by Paul S. Bruckman, L. Kuipers, J, Suck, and the proposer. 
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Recursion for a Triangle of Sums 

B-583 Proposed by Dorin Andrica, University of Cluj-Napoca, Romania 

For positive integers n and s, let 

' n s 

&n% s 
& ( " * ) • k = 

Prove that SniS+1 = n(Sn)S - Sn_la8). 

Solution by J.-J. Seiffert, Berlin, Germany 

S+ 1 ' 

Also solved by Paul S. Bruckman, L. A. G. Dresel, Russell Euler, Piero Filip-
poni & Odoardo Brugia , Herta T. Freitag, Fuchin He, Joseph J. Kostal, L. Kuipers , 
Carl Libis, Bob Prielipp, J. Suck, Nicola Treitzenberg, Paul Tzermias, Tad P. 
White, and the proposer. 

Product of Exponential Generating Functions 

B-584 Proposed by Dorin Andrica, University of Cluj-Napoca, Romania 

Using the notation of B-583, prove that 

s , 
Sm + n,s ~ ^ ( b I ^m,k^n, s-k' 

k = 0 v / w 

Solution by Heinz-Jurgen Seiffert, Berlin, Germany 

The stated equation is not meaningful if one uses the notation of B-583. 
(To see this, put s =0.) But such an equation can be proved for 

Sn,a:= £(£)*"> (1) 
with the usual convention 0°  : = 1. Consider the function 

Fix, n) : = £ Sn,s ~y . (2) 
s = 0 S-

Since 0 ̂  Sn,s ^ 2nns, the above series converges for all real x. Using (1), 
one obtains 

H*. n) = t E O ^ - E (I) ± ^ - E (£)«** 
s = 0 k = 0XK/ S' k = o V K / s = 0 s - k = 0^K/ 

or 
F(x, n) = (e* + l ) n , (3) 

which yields 

F(x9 m + n) = FGr, m)F(x, n). (4) 
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CauchyTs product leads to 

F(x, m)F(x, n) = Z L ~JT (s - k) I °° ( 5 ) 

From (2)9 (4), and (5), and by comparing coefficients, one obtains the equation 
as stated in the proposal for the Sn s defined in (1). 

Also solved by Paul S. Bruckman, Odoardo Brugla & Plero Filipponi, L. A. G. 
Dresel, L. Kuipers, Fuchln He, J. Suck, Nicola Treitzenberg, Paul Tzermias, 
Tad P. White, and the proposer. 

Combinatorial Interpretation of the F 

B-585 Proposed by Constant in Gonciulea & Nicolae Gonciulea, Trian College, 
Drobeta Turnu-Severin, Romania 

For each subset A of X = {Is 29 oe.9 n}9 let r(A) be the number of j such 
that {j, j + 1} c A. Show that 

A CX 

Solution by J. Suck, Essen, Germany 

Let us supplement the proposal by 

"and £ 2rW = F ." 
neJcX 2n 

We now have a beautiful combinatorial interpretation of the Fibonacci sequence, 
The two identities help each other in the following induction proof* 

For n = 1, A = 0 or X, r(A) = 0. Thus9 both identities hold here. Suppose 
they hold for k = 1, . . . , n. Consider Y 1 = {1, . . . 9 n9 n + 1}. If {n9 n + 1} c 
B c J9 r(B) = r(B\{n + 1}) + 1. If n t B c J9 r(5) = r(S\{n + 1}). Thus9 

E 2r(B) = E 2r(i4) + 1 + E 2rC4) ( t h e l a s t s u m i s l f o r 

n + U B c y n e ^ c i ^cz\{n} t h e s t e p 1 -> 1 + 1) 
= 2 ^ 2 n + F2(n-l) + l = F2n + F2n+1 = ^2(n + l )» 

and 
£ 2' ( B ) = £ 2^(B) + £ 2 ^ ) = f20i+i) + F2n+1 = P Z ( B + 1 ) x . 

j?cy n + i e s c y ^ c j 

Also solved by Paul S. Bruckman, L. A. G. Dresel, N* J. Kuenzi & Bob Prielipp, 
Paul Tzermias, Tad P. White, and the proposer. 

#<>•<>• 
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