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1. INTRODUCTION

In [3] Davison proved that

L = 1 1 1 , with o = l—%TZE,

F F F
2°4+ 2+ 2%+ ...

n21 Zlna"

where Fy, =0, Fy =1, F,,, =F, . +F, , for n 2 0, and [x] is the greatest in-

teger < x. In [1] the authors found the simple continued fraction for

1 .
Tz, C) = (C - 1) 2 —m7» With real > 1 and C > 1.
nz1 (C
In this paper, we shall prove a new generalization of Davison's Theorem

(see Theorem 1).

2. CONVENTIONS AND USEFUL THEOREMS

Throughout this paper, make the following conventions:

_1+V5

5 .
Let F, be defined for negative n by F,,, = F,,; + F,.

Define Y, by: Y, and Y, are given real numbers such that Y, + Y,a > 0, and
all other values of Y, are defined by ¥, ,, = Y,,, + Y,, n any integer.

Also, throughout, let the Fibonacci representation of an integer X 2 1 be

written as

K=FV1+FV2+-'.+FV,1’ (1)

where 2 < V; <, V, <, ... <, V and a <, b means that a + 2 < b.

Define the function e(X), for K an integer = 0, by

e(X) = 0 4if K = 03
otherwise,

e(X)

]
3y
+
e

+ -+ + F _, where K has the representation ().
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In the paper [4], setting a = —‘/j—zii gives

e(k) = | (k + D)a"t], for k > 0.

fied by comparing the series to geometric series.

(2)
The convergence ranges for the series in this paper can easily be justi-

Because of the limit passing

below, the convergence ranges for the continued fractions are also justified.

From [6], we will use the Euler-Minding Theorem:

1f 3 = 1+ S ﬁ T —la , where {C;} is a sequence of nonzero real
o
numbers for k 2 1, then,
Ap = 1 + 2 Cy Cy Cy »
and w21, 1<7,<, ... <, ,<p b 2 "
B, =1+ ¢, C . C o
v
P w31, 2€V, ... U< 1 V2 Va

Actually, all that is needed is the following corollary:

Write 4 (Cy, Cys -5 Cp) = Ap, then notice By, = 4,_1(Cys C35 +v.5 Cp).
Now, let P + « and we have:
) c, 0, C, _A,X,(Cl, Cos ove)
TTF T T+ - TE(C,, Gy )"

Notice that the indices on the summation for 4., will be:

n>1, 1<V, <, 7, <, von <, 7,

3. THE MAIN TH:OREMS

)Y0n+ Y_qlna™t]

(3

> Y. 1 1 1 1
Theorem 1: = L —— = C 't 7 I 7 7 s

Z(l Yyn+Yolno ©§ CY + O+ 02+ O34 ..

ns1 0 where C > 1.

Proof: Set C, = a1 5™ in (3), with |a], |p| <1, not both 1, to get

1+ Z aF01—1+'”+Fv,,—1 bF”x+“'+FVn
afopfs ghpe n>1, 1<7,<, ... <

1 + = S 2 2 Ve
1+ 1+ ... F 4o+ F _F, .+ +F
1+ Z av1+ + va, v +1 v+l
nz1l, 1< 1<2...<2V,l

Denote the numerator by F(a, b) and the denominator by G(a, b).

Now,

F(b, ab) =1+ E aFv1+"'+Fv,.bF"1+1+"'+F”n+1 = G(a, B).

nz1, 1sS7,<, ... {7

1 n

19881

(3)

(4)
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Hence, we have

F(a, b) _ afopfr  gFaipFe
b, aby 't i 1w o (5)

From this, it follows that

F(b, ab) _ | , ab™ af2p's
F(ab, ab?)

1+ 1+ ---

so we find that

F(a, b) = F(b, ab) + bF(ab, ab?), (6)
with |a|, || < 1, and not both 1.

An expansion for F(a, b) could now be reached by setting
F(a, b) = 2k, na"d", with n, m > 0,

and equating coefficients in (6), but this route is tedious. Instead, notice
that if in (4) the exponent of b is k, then the exponent of a will be e(k) and
because of Zeckendorf's Theorem (see [2]), k will range over the integers > 0.
Hence,

F(b, ab) = 1 + 3. a®™@p" = 3 o°™p",

n=1 n=0
Thus, we also get

F(a, b) = ¥ a"=¢tpe®,
n20

Using (2), we have

- -1
F(a, b) = Z an—l(n+l)0L ljbl(y”-l)a J: (7)
>
and n20
F(b, ab) = ¥ al®* Ve hpr, ®
n20
Let a = C4 and b = C8 in (7) and (8) to get
- - -1
F(CA4, C'B) = 2 CA(n 1)+ (B- A4) lnu j’ (9)
21
and n
F(CB, cA*TE) = 2: CB(n-1)+Anm‘H. 10)
n21

Set A =Y, - Y, and B = -Y¥, in (10) to get

Y Y Yo(n- 1)+ (¥, -Y,)na™?
(@) @) = 5@ e >, an
nz1
or set A = -Y, and B = -Y, in (10) to get
Y, +Y Y. (n-1)+Y,|na"?
A3 (B)) - ()T el > (12)
nz1
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From (5), we see that

¥, ¥ Y0F0+‘Y1F1 Y0F1+Y1Fz Y0F2+Y1F3
Fe, ¢ 1+ ¢ T ¢ ¢ ,0< < 1.
F(Cyl, 0Y0+Y1) + 1+ 1+ .
It is easy to show by induction that Y, = Y,F,_, + Y, F,, for integer »; hence,
Y Y Y Y Y
F(cTe, C71) gt (72 c3
=1+ TF 13 T+ 0<c<1.

F(CYI, CY0+Y1)

Replacing ¢ with its reciproval variable,
(4. (2)7)
F((%)Yl ) (%>Y0+1’1>

¢ ¢ ¢

T+ 1+ T+ -+

-y -7,

1+ c>1

]

clogh chgtic ohiptepts phaptipT
+

=1 ,
cho+  chy c2+ Tt -
c>1,
(by the equivalence relation (3.1) of [7])
YO'Yl
=1+ ¢ 1 L 7 1 , C> 1.
cho+ ¢ cTow 0T 4+ .l
Hence,
]. YO 1 'Yl -y
F<<E> . (3) >C . . . .
=cT + - 5 , C > 1.
7 (l)yl (l)yo-i-}’l)c_yl C-Yu + Cyl + 072 4+ (073 4 -0
c > AL

Substituting in (11) and (12) and simplifying yields the theorem.

-1 -1
Theorem 2: 3, ¢AC - DHE-DITL _ gn pBlr= DFAIel | pd(e- DFBlnad | gor o] < 1,
n>1 n21

Proof: Let @ = C4" 8 and b = ¢4*?8 in (7) and simplify to get

F(CA+B, (AT2By - 2: C(A+B)m—1)+B1mr1k (13)

nzl

Let ¢ = C? and b = C? in (6) to get
F(CA, ¢B) = F(CB, ¢4+B) + CPp(cA+B, ¢4t %5y, (14)

Now substitute (9), (10), and (13) into (14) and simplify to get the theorem.

Corollary 1: If 7 = 3 chnthealml | eor 0 <1, then Ty, = T - ¢ e Trs1s
n21
where kX is any integer.

Proof: Let 4 = ¥ ,, and B = Y, , in Theorem 2 and simplify.
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Corollary 2: Y C¢f*Funall £0p ¢ < 1, can be evaluated in terms of > c!™ and
n=1 nzl

rational functions of C for any integer k. TFor example,

Sertirl o g oo™ o+ ot (15)
n21 nzl )
Proof: Put Y, = F, in Corollary 1. Notice that
c {no]
T . =) ("= and T = e,
-t n21 ¢-1 0 ngl

Now Corollary 2 follows by induction using Corollary 1. For example, we find

= ¢ lna®) _ c [ na)
T, = =Ty or 0l =atg - Y0,

nz1 nzl

which is easily verified by Beatty's Theorem (see [5]). Applying Corollary 1

another time gives (15).

1 Fyn+ Fy o lnaf
Corollary 3: 3 (—) is trancendental for integer k # -1 and integer

c>1 ST

Proof: TFrom Corollary 2 we can see that the sum for k # -1 and rational func-

. . - . R 1 \lmal
tion of ¢ added to a rational function of C multiplied by E:n>1<5)

transcendental by setting o= (1 + Jg)/Z in [1]. We can show by induction that
1

Lna |
the rational function which multiplies 2:n>1(5) is nonzero; hence, the cor-

which is

ollary follows.
Corollary 4: If A and B are integers not both zero, then the number of times
that any integer occurs in the sequence

A(n - 1) + (B - A)lna™t], for n > 1,

is equal to the total number of times that integer occurs in the following se-

quences:

B(n - 1) + 4lna" Y], for n > 1, and A(n - 1) + Blna], for n = 1.

Proof: The proof follows immediately from Theorem 2.
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