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INTRODUCTION 

In [3] Davison proved that 

l 
-, with a 

y 1 = 1 1 1 . , 1 + /5 
2 

where FQ = 0, F1 = 1, Fn + 2
 = ^n + i + ^ n > for n ^ ®> an(* L̂ -l is t^ie greatest in-

teger < x. In [1] the authors found the simple continued fraction for 

T(x, C) = (C - 1) E "T^T5 w i t h r e a l ^ > 1 and C > 1. 
n> 1 (7 

In this paper, we shall prove a new generalization of Davison?s Theorem 

(see Theorem 1). 

2. CONVENTIONS AND USEFUL THEOREMS 

Throughout this paper, make the following conventions: 

1 + 1/5 
a = ^ • 

Let Fn be defined for negative n by Fn+2 = Fn + 1 + Fn. 
Define Yn by: YQ and Y± are given real numbers such that Y0 + Y^ > 0, and 

all other values of Yn are defined by Yn + 2 = Yn+1 + Yn, n any integer. 
Also, throughout, let the Fibonacci representation of an integer K ̂  1 be 

written as 

K = FVi + FVi + .- + Fv , (1) 

where 2 < V1 <2 F2 <2 • • • ̂ 2 ^ anc* cc <2 b means that a + 2 < fcs 
Define the function e(K) 9 for X an integer > 0, by 

e(K) = 0 if Z = 0; 

otherwise, 

£(X) - Fv _ + F + e•• + F , where X has the representation (1). 

40 [Feb. 



A NEW GENERALIZATION OF DAVISON'S THEOREM 

In the paper [4], setting a = « gives 

e(k) = [(k + Da" 1 ], for k > 0. (2) 

The convergence ranges for the series in this paper can easily be justi-

fied by comparing the series to geometric series. Because of the limit passing 

below, the convergence ranges for the continued fractions are also justified. 

From [6]s we will use the Euler-Minding Theorem: 
Ap (s i C 2 6 3 Cp 

_ = i + -—- -_-. -—— _ s where \CV J is a sequence of nonzero real 

numbers for k ^ 1, then, 

Ap = 1 + 2_j Cy Cy • • • Cy $ 
n>l, 1<V,<2 ...<2Vn<P x 2 

and x 

Bp = 1 + 2~J ^y Cy . . . Cy . 
n>l, 2^V±<2 . . . <2Vn<P i 2 

Actually, all that is needed is the following corollary: 

Write A (Cl9 C29 . 8 , , Cp) = Aps then notice Bp = Ap_1(C29 C3, . .., Cp). 

Now, let P -*• °°  and we have: 
Cx C2 C3 _ AJC19 C2, , . . ) 

1 + FT TT i + - - . " AJC2, c3, . . .) • ( 3 ) 

Notice that the indices on the summation for Am will be: 

n > 1, 1 < V1 <2 F2 <2 . . . <2 Vn . 

?.(*) 

3 . THE MAIN THEOREMS 

1 v r 0 w + J ^ L n o T 1 ] 

W>1 J - l 1 1 
Theorem 1 : :— = C + 

y / I \ J i n + J ° [ n a _ X j ^ + ^ + c*2 + °Y" + ••' 
^ A ^ 7 ' where (7 > 1. 

P roof : Se t C„ = a^-1 bFn i n ( 3 ) , w i t h | a | , |&| < 1 , n o t b o t h 1 , t o g e t 

E F + . . . + p F + . . . + F 

a"'-1 " . - ' F ' v 

1 + 1 + . . . 

Tl>l, 1 < 7 ! < 2 . . . <2Vn 

Denote the numerator by F(a9 b) and the denominator by G(a9 b). 
Now, 

F(b9 ab) = l+ E aF°>'*"" + F<>"bFv* + 1+'" + Fv* + 1 = G(a, b) . (4) 
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Hence, we have 
F(a, b) aF*bFl aF^bF* . 

^ + 1 _L 1 _I_ " W / F(b9 ab) 1 + 1 + 

From this, it follows that 

F(b9 ab) = + aFlbF2 aF*bF* 
F(ab9 ab2) l + I + ' - ' 

so we find t h a t 

F(a9 b) = F(b, ab) + bF(ab, ab2), (6) 

with |a|, |&| < 1, and not both 1. 

An expansion for F(a9 b) could now be reached by setting 

F(a5 b) = X kntmanbm , with n, m > 0, 

and equating coefficients in (6), but this route is tedious. Instead, notice 

that if in (4) the exponent of b is k, then the exponent of a will be e(k) and 
because of Zeckendorffs Theorem (see [2]), k will range over the integers > 0. 
Hence, 

F(b, ab) = 1 + £ ae(nV = £V(*V\ 

Thus, we also get 

F(a9 b) = ̂  a ^ e W ^ ) . 

Using (2), we have 

F(a, b) = ^^-Kn+ D a ^ J f c K n + D ^ J , ( 7 ) 

and 

F(b, o&) = £ aL(n+1)crV. (8) 

Let a = CA and b = CB in (7) and (8) to get 

F(CA CB) = Y CA('n" 1)+ (5_i4)LncrlJ (9) 
? 2 ^ 1 

and 
F((7B, <^ + z?) = L C B ( n - 1 ) + ̂ lna~lj. (10) 

n> 1 

Set i4 = J0 - I± and B = -Y0 in (10) to get 

\ ' n^ 1 

or set A = -Y0 and B = -J^ in (10) to get 

[W1'^)^1)-^^"'1^0^ w>1- (12) 
' n> 1 
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From (5)5 we see that 

F(CY°, cJn gy.+yx g v ^ v ; cv^y. 
F(CY\ c7»+^) 1 + 1 + i + . - . ' 0 < c < 1 -

I t i s e a s y t o show by i n d u c t i o n t h a t Yn = I0Fn_1 + IxFn, f o r i n t e g e r n ; h e n c e , 

F(CYl, CYo + Yl) 1 + 1 + 1 + 

R e p l a c i n g C w i t h i t s r e c i p r o v a l v a r i a b l e , 

' l \ y o / 1 \ V 
>W' • & 

' ( ( * > ' ' • ( * ) ' • " ' ) 
{77o6*~Jl C J o C y i C ~ J 2 C7lCl2C~Y* CYlCY^C~Yh 

CY° + C J l + C7* + C,y3 + • • • 

C > 1, 

(by the equivalence relation (3.1) of [7]) 

= 1 + - i - i , C > 1. 

Hence, 

w-m*-'-
(r-(r > 

^ + _1 1 1 1 , C > 1. 
_UJi /I\7o + M^-Ji ^ + ̂  + C + C + 

Substituting in (11) and (12) and simplifying yields the theorem. 

Theorem 2: £ C4("" X) + (B' 4)lna"lj = £ ^C*-i) + ̂ V C^"" 1) + BlBaJ, for \c\ < 1. 
n>1 «> 1 

Proof: Let a = C^ + 5 and b = ĉ "1"25 in (7) and simplify to get 

p,QA + B QA+2B\ _ y^ Q(A + B)(n- D+Blna'1} , ^ N 

rc> 1 

L e t a = C"4 and fc = CB i n (6) t o g e t 

F(CA, CB) = F ( £ 5 , CA + B) + CBF(CA + B, CA+2B)e (14) 

Now s u b s t i t u t e ( 9 ) , ( 1 0 ) , and (13) i n t o (14) and s i m p l i f y t o g e t t h e t h e o r e m . 

C o r o l l a r y 1: I f T = £ C 7 * n + ^ + 1 ^ , f o r C < 1, t h e n ^ + 2 = ^ - C ~ J * + 1 ^ + 1 , 
n> 1 

where & i s any i n t e g e r . 

P roo f : L e t A = ?k+2
 a n d # = ?k+3 i n Theorem 2 and s i m p l i f y . 
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Corollary 2: £ eFkn+**+lLwaJ, for C < 1, can be evaluated in terms of £ C1™1 and 

rational functions of C for any integer k. For example, 

X cn+2lnaJ = (i + c-^Zc1™1 - a + c)"1. (15) 

Proof: Put Yk = Fk in Corollary 1. Notice that 

T ± - ECn = 7 ^ and T. = £ ClWaJ-

Now Corollary 2 follows by induction using Corollary 1. For example, we find 

which is easily verified by Beattyfs Theorem (see [5]). Applying Corollary 1 

another time gives (15). 

Y ^ w + ^k+1Lnaj 
\ Corollary 3- £ \n) i s trancendental for integer k ? -1 and integer 

C > 1. 

Proof: From Corollary 2 we can see that the sum for k ^ -1 and rat ional func-

E l 1 \l"aJ 
^> i\7l which i s 

transcendental by set t ing a= (1 + v5)/2 in [1] . We can show by induction that 

E l 1 \Lwaj 
n^il?7) ^ s n o n z e r ° s bence, the cor-

ollary follows, 

Corollary hi If A and 5 are integers not both zero, then the number of times 

that any integer occurs in the sequence 

A{n - 1) + (B - A)[na'1\9 for n > 1, 

is equal to the total number of times that integer occurs in the following se-

quences: 

B(n - 1) +i4Lna"1J9 for n > 1, and A{n - 1) + B[na\, for n > 1. 

Proof: The proof follows immediately from Theorem 2. 
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