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In June 1985, twenty-three other high school students and I trained for the 

International Mathematical Olympiad in a three-week session hosted by the U.S. 

Military Academy. There I, along with three classmates (John Dalbec, Jeremy 

Kahn, and Joseph Keane) and the two coaches (Professor Cecil Rousseau and Gregg 

Patruno) considered oo(n), defined as the number of possible outcomes in a race 

among n horses with multiple ties permitted. This sequence was first studied 

by A. Cayley [1] as the number of a certain type of tree having n + 1 terminal 
nodes. His results have been extended by the more recent papers of Gross [3] 

and Good [2]. 

Before uncovering these three papers, we independently proved eleven re-

sults which can be found in [1], page 113, [2], pages 11-14, and [3], pages 5-

8. Although we found that Good's statement (p. 13)s 

0)(tt) 

2(ln 2) n + l 
< ~ for all n < 16, (1) 

could be extended to n < 17, the only important new results were my proofs of 
Good's Conjectures 1-5. These conjectures are concerned with the behavior of 

the sequence modulo v. To prove these, we need the following lemmas. 

Lemma 1: If n, k ^ 1, and we define (JO(0) = 1, then 

2*u)(n) ^ 2k-'-13n + t fc'nVn - j) . (2) 
3 " 1 J - 0 W ' 

Proof of Lemma 1: We have, by equation (4) of [2], 

2feu)(» = 2k V" -^- + 2k V (i + k)" 
/ h 2

J' + 1 i - o 2i + k + 1 

= E 2*-'-\r + E E J
 i+1 

= £ 2 * - ' - 1 j n + E ^ ' ( " W - J) . 
j = 1 j . o V«/ ' 
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Note that, we we let k = 1 in Lemma 1, we obtain a relation derived by Cayley 

([1], p„ 113). Similarly, we can prove 

2-*o>(n) = -i,2*'-k-1(-jr + t i-ky(".Un - j) . (3) 
j = o j = i w / 

From Lemma 1, we have the following useful result, 

Corollary; If n, k > 1, then 

(2* - l)a)(n) = kZ2k-J-1jn (mod fc) . (4) 
J = I 

It is interesting to note that the corollary, along with Fermatfs Theorem, 

provides a simple proof of Theorem 5 in [2]. Now we shall use the corollary to 

prove another lemma. 

Lemma 2: For an odd prime p, let q = pm and r = pm+1 be consecutive powers of 

p. Suppose the sequence co(a) , oo(a 4-1), OB9 modulo r has period c, where <? is 

a multiple of <j>(<7-)- Then 

<7-i 
0 = E 2£?-fe-1[(^ + ^p) c - 1] (mod r) (5) 

fc = o 

for # = 1 , 2 , . . . , p - 1. 

Proof: From the corollary to Lemma 1, we find that, for all n ^ a, 

0 = (2r - l)[a)(n + c) - a)(n)] = E 2r-J'-1jn(j° - 1) (mod r) . 
j = i 

It follows that for any polynomial P(j) with integral coefficients, 

l:2r-t'1jnPti)tia - 1) = 0 (mod r). 
J = I 

Let P(j) = 1 - (j - ^ ) p _ 1 and let n be a multiple of <|>(r) greater than a. By 

repeated use of theorems of Fermat and Euler, we make the following sequence of 

observations concerning the terms of the sum that are nonvanishing (mod r) % 

j t 0 (mod p ) , on = 1 (mod r), j c - 1 = 0 (mod q), 

J = # (mod p ) , P(j) = 1 (mod p ) , P(j)Ua - 1) = J°  ~ 1 (mod P ) . 

Thus, the sum reduces to 

E 2r"^+^)-1[(^ + kVY - 1] = 0 (mod r). 
k = 0 

Now r - (g + kp) - l = q - g - k - l (mod p - 1). Also, since c is a multiple 

of <f>(<?)» we have [ (g + &p)c - 1] E 0 (mod q) . Thus, by Fermatfs Theorem, we 
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may substitute 2q""g'k~1 for 2r~{g+kp)~1 in the last equation. Finally, multi-

plying by 29, we obtain 

X 2q-k"1[(g + kpY - 1] = 0 (mod r) . 
k = 0 

Now we are ready to prove the theorems. 

Theorem 1: Modulo a prime p, the period of the sequence [oo(n)] is at least 

p - 1. This, along with Good*s Theorem 5, implies that the period is exactly 

p - 1. 

Proof of Theorem 1: For p = 2, the result is clear. If p > 3, let c be the 

minimum period. Applying Lemma 2 with a = 1 and q = 0, and with g a primitive 

root modulo p, we have 

0 = 2p-1-9(g° - 1) (mod p). 

However, 2P~ ~9 is not divisible by p, so g° - 1 must be. Since we chose ^ as 

a primitive root modulo p, we must have c ^ p - 1. 

Theorem 1 does not imply that, if oo(n) E 0 (mod p) , then n = 0 (mod p - 1) . 

[A counterexample is oo(3) = 0 (mod 13.] Proofs of three of Good?s conjectures 

in [1] depended on this result: 

GCF(o)(n), oa(n + 1)) = 1, GCF(oo(n) - 1, oo(n + 1) - 1) = 2, and n|o)(n), 

for all n. The first is false because oo(1090), oo(1091), and oo(1092) are all 

divisible by 1093. The second and third are still open. 

Theorem 2: If q = pm with p prime, then for all n ^ m, 

oo(n + <$>(q)) = co(n) (mod q), (6) 

where § is Euler's totient function. 

Proof of Theorem 2: Since n > m, the terms in the sum given by (4) with j di-

visible by p will drop out. The result then follows from jn+<$>W = j n (mod q) , 

which is Euler?s Theorem. 

Theorem 2 does not tell us that the period of the sequence {oo(n)} modulo q 

is exactly (J)(q) for g a power of a prime. We know only that the minimum period 

must be a factor of <$>(q) . Theorem 3 shows that, when q is the power of an odd 

prime, this fundamental period is no less than <j)(<7). To prove this, we need 

one more lemma. 
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Lemma 3: For an odd prime p5 let q = p m and v = pm + 1« Then, for any integer ks 

(1 + kp)^ - 1 = ~kq (mod r). 

Proof: By the binomial theorem* 

a + kp)*™ = ^(H.q))(kPy. 

Let /(n) denote the greatest integer d such that p^ divides n. Then 

/ft*^)?*) = 2 fU) - t fti) + i = /(*(?)) - /(*) + i9 
x x ^ 7 j = <K<7)-£+i j = i 

Since /(cf>(<7) - j) = /(j) for any j with 0 < j < (f)(q) . But if f(i) > 05 then 

i > pf(i) > 3f(i) > f(i) + 25 

so i - f(£) > 2 for all £ > 2. Also3 f($(q)) = 777-1, so if we look at the 

binomial expansion modulo i\ all but the first two terms drop out: 

(1 + kp)Hq) - 1 E 1 + <f>(q)(kp) - i = ~kq (mod r) . 

Theorem 3: Let p be an odd prime. Then, modulo p m , the sequence 

03(77?) , 03(777 + 1 ) , 03(77? + 1) , . .. 

has period exactly $(pm) ® 

Proof of Theorem 3°  Theorem 1 proved the case 777 = 1. Now suppose that Theorem 

3 holds for a certain m. We shall prove that it must also hold for 77? + 1. Let 
q = p m

3 let r = pm + 1
9 and let o be the minimum period of the sequence {o3(n)} 

modulo v. By the inductive hypothesis, §{q) is the period modulo qs so o must 
be a multiple of §(q) . By Theorem 2S o must be a factor of $(r) . But C()(P) = 

p§(q) , so c is either (j)(g) or M ^ ) • 

Suppose c = <J>(<?)• Applying Lemma 2 with a ~ m and g = I yields 

0 E*£ 2
q-k-1[{\ + kp)° - 1] E^V-*-1^) (mod r), 

£ = 0 £ = 0 

by Lemma 3, Evaluating this sums we obtain 

0 = (2q - q - 1)^ E -<7 (mod P ) (by Fermat!s Theorem), 

a contradiction, Thus3 a = $0?), an(i t n e induction is complete, 

We now proceed to consider the sequence modulo a power of 2* 

Theorem k: If 1 < m < n - 4, then 

03(n + 2m) E 03(TZ) + 2m + h (mod 2m4"5). (7) 
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Proof of Theorem h: Set k = 2m + 5 in the corollary of Lemma 1.. Then 2* - 1 = 

-1 (mod k), so 

a>(w + a) - 0)(n) = -^2k"d'1jnU° - D (mod fc) . 
j-i 

Now set o - 2m. The terms with even j drop out because 2k~^~1 is even and j n 

is divisible by 2m + \ The terms with odd j < k - 5 also drop out since 2k~J'~1 

is divisible by 2h and j° - 1 is divisible by 2m + 1 (by Euler's Theorem). Thus, 

our sum reduces to 

o)(n + o) - o)(n) 
= -22(fe - 3)n[(/< - 3)c - 1] - (fc - l)n[(/c - l)c - 1] (mod k) 
E -4(-3)n(3c- 1) (mod k). 

To show that this is congruent to 2m+k modulo 2m + 5, it suffices to prove that 

2 m + 2 is the highest power of 2 dividing 

3*™ _ i = o 2 " " ^ l)(32m_2+ 1) ... (3 + 1)(3 - 1). 

This is true since the second-to-last factor is 4 and each of the other m fac-
tors is congruent to 2 modulo 4. 

Theorem 5* If (A) (ft) is expressed in binary notation as 

an0 + 2anl + 2^n2 + ^anZ + •••> 

then the sequence a ^ , a(/7?+ ̂ ^ a(m+2)m$ "•• r u n s into a cycle whose lengths for 

#7 = 0, 1, 2, 3,... are, respectively, 1, 2, 2, 1, 2, 4, 8,... . From this, it 

follows that, modulo 2m, the sequence aj(m - 1), 00(777), 0)(T7? + 1 ) , ... has period 

1 when 777 = 1, period 2 when 2 < 77? < 4, and period 2m~h when 7?7 > 5. [We define 

o>(0) = 1.] 

Proof of Theorem 5- By Theorem 4 with m = 1, if n > 5, then 

oo(ft 4- 1) E a)(n) (mod 32) , 

so for 777 < 5, the sequence a5 , a6m, £7m5 ••• is periodic with period dividing 

2. [The period is 1 iff aSm = &6m> which we see holds iff 77? = 3, by observing 

the five least significant binary digits of a)(5) and oo(6) . ] Also, by observing 

the five least significant binary digits of 0)(0) , 0)(1), ..., 0)(4) , we see that 

the periodicity begins with amm instead of a5m for 77? < 5. 

If 777 P 5, then in the sequence arm 9 ci(m+i)m» a(m+2)m> ••• ° f z e r o s and ones, 

the terms are the opposite of what they were, after every 2m~h terms, by Theo-

rem 4. This implies that, after 2m~3 terms, the sequence repeats. Hence, the 
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sequence runs into a cycle whose length is a factor of 2m~3 but not of 2m~h. 

Thus, the period is exactly 2777-3. 

Finally, to summarize and extend our results, we have the follox^ing: 

Theorem 6: Let the prime factorization of r > 1 be 2mpm^pm^ . .. p m
k . If 

a = maxfe - 1, m^ m2, m^s ..., mk] 
and 

b = LCM(<KPiOTi), <Kp™0, ..., <Kp&W*)), 

then the period of the sequence 

oj(a), 03 (a + 1), a) (a + 2) , . .. modulo r 

is exactly 

2?, if m = 0 or 1, 
LCM(2, fe), if 2 < 77* < 4, 

LCM(2m'\ & ) , if 77? > 5. 

Note that the period of {o)(n)} modulo P is not the product of the periods 

modulo its prime power factors, but is, rather, their lowest common multiple. 

This implies that even when r is odd, the period modulo r is not necessarily 
<t*(r) 5 although it must be a factor of <f>(r). The smallest example of this is 

v = 15, in which case the period is LCM(cf)(3)5 (f)(5)) = 4 instead of (j>(15) = 8-

Proof of Theorem 6: Let o be the claimed period. If n ^ 77? - 1, then 

0)(n + a) = 0)(n) (mod 2m) 

by Theorem 5, since c is a multiple of the period of {&o(n)} modulo 2m. Also, 

if n ^ 777̂ , then 

03(n + <?) = oj(n) (mod p.7"1') 

by Theorem 3, since e is a multiple of (Kp!77*), for £ = 1, 2 S...,L Hence, if 

n > a, 
oo(n + c) = 0)(n) (mod P ) . 

If the actual period d of {oj(n)} modulo 3? were any smaller than c, then it 

could not be a multiple of all the necessary periods modulo 2m and pmt, since 

c is their LCM. Suppose rf is not a multiple of the necessary period modulo p?. 

Then, for some n > a, 0)(n + d) t oj(n) (mod p?) , so 

o)(n + d) f oj(n) (mod r) , 

a contradiction. Hence, the period given is minimum. 
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Now that we have finished proving the main theorems, we will conclude with 

a few applications of Theorem 6 and other miscellaneous results: 

(a) o)(12k) = b)(l2k + 3) = 0 (mod 13). 

(b) 59|o)(ll), so 59\b)(58k + 11). Dirichletfs Theorem implies that there 

are infinitely many primes of the form 58k + 1 1 , so there are infinitely many 

primes p for which co(p) is composite. 

(c) 9/̂ 0)(n) for any n, so there seems to be no generalization of p|o)(p - 1) 

([12]5 p. 23) to powers of odd primes. 

(d) For any prime p and any rn > 1, oo(pm) = 1 (mod p) , so if n|a)(n), n has 

at least two distinct prime factors. 

(e) For odd primes p and q, pq\b)(pq) iff p\u>(q) and q\u(p). There are no 

such primes less than 1700, but I conjecture on probabilistic grounds that such 

primes do exist. 

(f) For all n, GCF(oo(n) - 1, o)(n + 1) - 1) has no divisor less than 1700 

except 2. Yet, again on probabilistic grounds, I conjecture that there exists 

n for which GCF(co(n) - 1, o)(n + 1) - 1) + 2. 

(g) The only r for which the period of {oo(n)} modulo r is exactly (j)(p) are 

the numbers of the form pm and 2pm
9 where p is an odd prime, and 4. 
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