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1. INTRODUCTION AND GENERALITIES

In the theory of functions of matrices [3], the domain of an analytic func-
tion f is extended to include a square matrix M of arbitrary order k by defin-
ing f(M) as a polynomial in M of degree less than or equal to k - 1 provided f
is defined on the spectrum of M. Then, if f is represented by a power series
expansion in a circle containing the eigenvalues of M, this expansion remains
valid when the scalar argument is replaced by the matrix M. Moreover, we point
out that didentities between functions of a scalar variable extend to matrix
values of the argument. Thus, for example, the sum (sin M)? + (cos M)? equals
the identity matrix of order k.

The purpose of this article is to use functions of two-by-two matrices ¢
to obtain a large number of Fibonacci-type identities, most of which we believe
to be new.

To achieve this objective we generally proceed in the following way:

First we determine a closed form expression of the entries a;; of any func-
tion f(Q) =4 = [aij] based on a polynomial representation of the function it-
self.

Then we consider a set of functions f such that f(§) can be found by means
of a power series expansion 4 = [G;;1 = (@) and equate a;; and aij for some 7
and j, thus getting one or more Fibonacci-type identities.

We shall only be concerned with some of the elementary functions, namely,
the square root function, the inverse function, and the exponential, circular,
hyperbolic, and logarithm functions.

To illustrate the principles being used, we choose to proceed from the par-
ticular to the general, i.e., from use of the matrix @ defined in (1.3) to use

of the more general matrix P defined in (2.7).
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Throughout, we shall follow the usual notational convention that F, and L,
are the nth Fibonacci and Lucas numbers, respectively.
First we recall ([2], [3]) that, if M has m distinct eigenvalues y, (k = 1,

2, «.., m), the coefficients c; of the polynomial representation
m-1 .
f) = Z ciMi (1.1)
=0

of any analytic function f defined on the spectrum of M are given by the solu-

tion of the following system of m equations and m unknowns

m-1 3
-23007—'“1 = F(1g) (kK =1, 2, veuy m. (1.2)

Then we consider the well-known matrix (e.g., see [4])
Q = . (1.3)

Since the distinct eigenvalues of § are o = (1 + /5)/2 and B = (1 - /3)/2, it

follows from (1.1) and (1.2) that the coefficients ¢, and ¢, of the polynomial

0
representation

@ =coI + ¢y (1.4)

(where I denotes the two-by-two identity matrix)
of any function f defined on the spectrum of § are given by the solution of the
system

c, + ci0 = f(a)

{co +¢,B = f(B). (1.5)
In fact, from (1.5), we obtain
ey = (af(B) - BF(a)) N5
{cl (F@) - FBNHN5. (1.6)

Therefore, from (1.4) and (l1.6), we can write

[an a, | l:ocf(oo - BF®)  f@) - £(B)
f@ =4-=

A1 9an V5 | fla) - £(B) af (B) - Bf(a)

. (1.7)

It can be noted that the main property of the matrix @, that is,

Qn Fn+1 Fn (1 8)
£ Fn—l .

can be derived immediately from (1.7) by specializing f to the integral nth

power.
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2. THE SQUARE ROOT MATRIX

In general, a two-by-two matrix possesses at least two square roots [3].
In the case of ¢, the existence of a negative eigenvalue (B) implies that the
entries ay; of any square root A4 will be complex. Specializing f to the square
root, from (1.7) we obtain the following equations defining one square root of
@,
(wa + W1/a3) V5
a;, = a,, = (o - i/1/0) V5 (2.1)

a,, = (V1/o + W) V5,

where 7 = v-1.

An alternative way to obtain a square root of @ is to solve the matrix

Q
I

equation A? = @, that is,

a,, a,, 1 1
~ N = (2.2)
az1 Qa2 1 0
from which the following system can be written:
(A2 ~ A
ay; ta;,a,, 1
ay,a,, +a,,a,, =1 (2.3)
Ay1Qyy T dyydy, =1
) A /\2 —
La21a12 +ta,, 0

From the second and third equations we can write

A A A A A A
alz(all + a22) - a21(a11 + azz)’

~

from which the equality alz =aqa is obtained (i.e., as expected, ¢é is a sym-

21
A

metric matrix). Therefore, from the fourth equation we get alz =ad,, = iiazz.
Substituting these values in the first and second equations and dividing the
corresponding sides one by the other, we obtain g,, = (1 * 2)a,,. Hence, the

solutions of the system (2.3) are:

QD
Il

= (L x)a,,
a,, = *ia,, (2.4)

= +/(-1 7 2¢)/5-

QD
1]

12

Q>

22
Since

-1 73 24 = ‘/Eei(‘niarctanZ)’

the complex entry 4,, can be written as

22
azz - (1/5)1/4 ei(niarctanz)/2+ikn (k =0, 1).

The real part of &,, is
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T + arctan 2

> (k =0, 1). (2.5)

Re(d,,) = (-1)(1/5)** cos

Since every square root of @ must satisfy (2.3), the matrix A defined by (2.1)
does. Equating the real parts of a,, and &22, and squaring both sides of this

equation, from (2.1) and (2.5) we have

1/(50) = V1/5 sin? 3&%‘?‘3—2

thus obtaining the trigonometrical identity

o = 1/(V5 sin? 2EctaR 2), (2.6)
Equating the imaginary parts of Ay, and 522, we obtain the equivalent identity
o = V5 cos? arctan 2 (2.67)

5 .
The preceding treatment may be generalized in the following way:

Let

P = (2.7)

P" = (2.8)

where U, (n = 0, 1, 2, ...) is defined by the recurrence relation

U,, =pU,,, +U,3 U, =0, U =1. (2.9)

0
When p = 1, we get the Fibonacci numbers F,. When p = 2, the Pell numbers

P, result.

Writing
A = Vp2 + &4, (2.10)
we find that the eigenvalues of P in (2.7) are
ap = (p +8)/2, Bp = (p - B)/2. (2.11)
From (2.11) and (2.10), it can be noted that 0,8, = -1, i.e., Bp = -1/op.

When p = 1, these eigenvalues are (1 * /3)/2 as given earlier (namely, the
values of a = o, and B = B,). If p =2, these eigenvalues reduce to
a,=1+V2 and B, =1-Y2.
Paralleling the argument for Fibonacci numbers outlined above, we may de-
rive the identity corresponding to (2.6):

2 arctan(Z/P))' (2.12)

ap = 1/(A sin >

Taking p = 2, we have the identity for Pell numbers:
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o, = 1/(2/2 sin? sretem 2 1). (2.13)

It must be noted that identity (2.12) may be verified directly. In fact,

the identity sin®(x/2) = (1 - cos x)/2 implies

in? arctag(Z/p) _1- cos(aiftan(Z/P)) = - p/JEE—I—Z)/Z

(1 - p/A)/2 = (b - p)/(2D) = -Bp/A=1/(oph).

3. THE EXPONENTIAL FUNCTION MATRIX

The previous results follow for f(x) = V. Other particular didentities
emerge for other choices of f. Specializing f to the exponential function,

from (1.7) we obtain:

a,, = (ae® - BeB) V5
a, =a, = (- eBY N5 (3.1)

12
(ceB - Be*) /5.

Qy2

An alternative way of obtaining A= [@;:]1 = exp @ is (see [1], [5], [6]) to

‘I,J]
use the power series expansion

exp ¢ =i e (3.2)

n=0n!

From (1.8), it is easily seen that:

A L Fn+1

a

11 n=0 7’2!

~ ~ & Fn

1912 = @ = 2 57 (3.3)

o F

n-1

Lazz =

n=0 n!

Therefore, equating the corresponding entries of A and 4, from (3.1) and (3.3)

we obtain the following known Fibonacci identities (see [4]):

o F

P I G N (3.4)
ol Fn+1 _ o 8 ‘/— 3.5
n‘éon,—(ae-se)/s (3.5)
o Foy o -

RN = (ce Re®) /V5. (3.6)

Combining (3.5) and (3.6), we get
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2: Zi = g% + B, (3.7)

It is evident that the above results may be generalized by using the expo-
nential of the matrix P. As an example, for p = 2, the following identity in-

volving Pell numbers,

f: = e’ - e7V2)/(2/2), (3.8)

§|3

is obtained. Similar results to those in (3.5)-(3.7) readily follow.

4. OTHER FUNCTIONAL MATRICES

Let us consider the following power series expansions ([3], [6]):

sing = ¥ (-1 20 4.1)
o 2n + 1)!
_ 0 " QZH
cos Q = ngo (—l) W (4'2)
sinh g = 3 =2 (4.3)
wTo 2n + 1)! .
cosh @ = Z (Zn)‘ . (4.4)

Using reasoning similar to the preceding, we may obtain a large number of
Fibonacci identities, some of which are well known [6]. These identities have

the following general forms,

¥ eF, = (F(0) - FB)) N3, (4.5)
n=0
i;)ann+1 = (af (@) - Bf(B))/Vrl (4.6)
S e F = (f®) - Bf@) N5, 4.7)
n=0

fly) = f_olocny”

A brief selection of particular cases is shown below:

e F2n+l

Z -1H" m = (sin o - sin B)/‘/E (4.8)
n=0 :

o Fz

Y (-D* T " (cos a - cos B)/V5 (4.9)
n=0
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v F,
Z;JTEZ:;;%ST-= (sinh o - sinh B)/¢§ (4.10)
B an
Z% T - (cosh o - cosh B) V5 (4.11)
= Fm+1
L TamyT = (@ cosh o - B cosh BYN5 (4.12)
n=0—é§%§% = (o cosh B - B cosh a)/V5. (4.13)

Combining some of the above-mentioned results, we may obtain analogous identi-

ties involving Lucas numbers. For example, combining (4.12) and (4.13) gives
i LZn

W= (2n)!

= cosh o + cosh R. (4.14)

Again, we point out that these identities may be generalized by using circular
and hyperbolic functions of the matrix P. In particular, we may obtain results

for Pell numbers similar to these listed for Fibonacci and Lucas numbers.

5. EXTENSIONS

The results obtained primo impetu in Sections 3 and 4 may be extended using

functions of the matrix

xF

= k =
Qk,x xQ ka

ka

3
TFy g

k+1 (5.1)

where x is an arbitrary real quantity and kK is a nonnegative integer. Since
Qk,x is a polynomial r(§) in @, it follows that its eigenvalues are
X, (ks ) =r(a) = xok
{X2<k, x) = r(B) = xBX, (5.2)
and f(Qk,x) = f(r(Q)) derives values in terms of f(r(a)) and f(r(B)). Thus,
any function f defined on the spectrum of &, , can be obtained from (1.7) by
replacing f(o) and f(B) with f(X;(k, x)) and f(X,(k, x)), respectively. More-

over, from (5.1) and (1.8), it is easily seen that Qk,x enjoys the property

n n
kan+l kan

o (5.3)

kyn nokn
Q" = (2@ = z"q = n
k,x kn T yn
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5.1 The Exponential Function of Qk x

Specializing f to the exponential function, from (1.7) and (5.2) we obtain
the following values of the entries of the polynomial representation 4; , =

[aij(k, x)] of exp Qg

>

a,,k, ) = (ae®%* - Be=B*) V5
a,, ks 2) =a, (k, x) = (e - e®B*y 1V/5 (5.4)
' a,,k, x) = (ce®B* - ey /5,

Calculating exp Q. - by means of (3:2), we have

n

el Q A ~
exp By, = B tF = Ar, = 1500 o). (5.5)

Equating d;; (k, x) and ag; (k, %), from (5.5), (5.3), and (5.4) we obtain:

- ankn+1 x k

L = (e - Be“® ) V5 ; (5.6)
o Z'F, cu . |

L7 = @™ - e"fHN5 (5.7)
n=0 :

= xn kn -1 _ xB* xak

T —5 = (e®F ~ peme) V5. (5.8)
n=0 :

Combining (5.6) and (5.8), we get

n
- kan

= grak 4 gaBk (5.9)

n=0 n!

kThe above results (5.6)-(5.9) may be generalized using the exponential of

the matrix xP* [refer to (2.8)].

5.2 Circular and Hyperbolic Functions of Qk .

By means of a procedure similar to the preceding one, the use of sin Qk,x’
cos Qk 2? sinh Qk % and cosh Qk z yields a set of identities having the fol-

lowing general forms,

Y c,a"h,, = (F@ok) = F@BR) V5, (5.10)
n=0
S 6,2"F,,,, = (f k) - BF@E)) 15, (5.11)
n=0
T e,aF, = @FGE) - B @) 5, (5.12)

where
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f@ = iocny”-

"=
A brief selection of particular cases is shown below:

(_l)nx2n+lF

io (2n + 1§(z2"+1) = (sin(zak) - sin(xB*)) V5 (5.13)
> (_l)nxanzer

go RO (cos(xak) - cos(xBX)) V5 (5.14)
x2n+l )

z% ——Tzﬁfjgz;ggl = (sinh(zok) - sinh(xR*)) V5 (5.15)
fé xanan

= (20)1T = (cosh(zak) - cosh(xB*)) N5 (5.16)
e xanzkn

E—O—W = cosh(xock) + COSh(&CBk). (5-17)

The above-mentioned identities may be generalized using circular and hyper-

bolic functions of the matrix xPX [refer to (2.8)].

5.3 The Logarithm of Qk * for k Even and Particular Values of x

The principal value of the function 1ln & can be calculated by (1.7), thus
getting a complex matrix A. Unfortunately, since § has a negative eigenvalue,

the power series expansion of the matrix logarithm (see [3])
_ o (_l)VL-‘l .
Ing=3% -~——@-D (5.18)
n=1

does not converge and a matrix A cannot be obtained in this way. On the other
hand, the use of Qk,x’ with k even, allows us to utilize this function. We
will show how, setting x equal to the reciprocal of the k™M Lucas number, some
interesting results can be worked out.
First we define the two-by-two matrix
Ry g =Qp - I =a@k-1T (5.19)

whence, using induction, it can be proved that, if » is a nonnegative integer,

then n n+1l
B, | com i o
Tk Ly kn kn+1
Incidentally, it can also be proved that
n n+1
Ry 12 = ‘1; E_iinfnlz;l E_iinF " (5.21)
2 n n

+1
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Then replacing f in (1.7) with the function f(y) = ln(xyX), we have f(a) =

1n(xok), f(B) = 1n(xR¥), and we calculate the matrix
In @, =4y, = lagk o)

which is real if and only if k is even and & > 0. 1In fact, we obtain

where it can be noted that a,,(k, x) = a,,(k, x) is independent of x.
Finally, since for k even the inequality
IX; (ks 1/L;) - 1] <1 (i =1, 2)

holds [see (5.2)], we can calculate the function 1In Qk UL
s k

power series expansion (5.18):

~

'all(k, x) = 5% In o + In x
a ,k, x) = a21(k, x) = gK—ln o (5.22)
V5
_ k
a,,(k; 2) = -— Ina + 1n x
L V5

by means of the

© _1yn -1 .
1n @ - 21% B, = Ara, = LGy 1IN, (5.23)

ko 1/L, <

Replacing x by 1/L, in (5.22) and equating &ij(k, 1/L;) and a;; (k, 1/L;), from

(5.23), (5.20), and (5.22), we obtain:

oo

F
kil oo dng, - dna (R =0, 2, 4y ...) .
n=1 VLLk ‘/5
©o F
2K n o (=0, 2, 4y ..)) 5.
n=1nLk ‘/5
o Frn+a k
—=Inl, +—1Ina (k=0,2, 4, ...). (5.
n=1 nLk \/5
Combining (5.24) and (5.26), we have
o [
Ko In L2 (k=0, 2, 4, ...). 5.
n=l7’LLk
Using the matrix @, 1/2 [see (5.21)], by means of the same procedure we
tain F
) F ©
nn - A In o = 3, 2Z (5.
n=1"n2 ‘/5 n=1 "3
and .
had n
=1 s 5.
nglnzn n A (

where the right-hand side of (5.28) was derived by setting k = 2 in (5.25).
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We conclude this subsection by pointing out that, from the equality
k _ n - pn
@%/L, = D" =By 1y,
[directly derived from (5.19)] and from (5.20), the following identities can be

obtained:

2on n-17 Fkitl Fkn:l

Y\ (-1) = = (-1)" = 5.30
i§0<7’) Ly Ly ( )
Xo(n n-1 Fki n+1 Fkn

) (=D — = (-1) —= 5.31
ggo(l) Li Ly ( )
n . Ly L
(D)ot E = o £ (5.32)
i=0 Ly L]

5.4 The Inverse of I - Qk,x

Let us consider the two-by-two matrix

Sk,x = _Rk,x =1 - Qk,:c =71 - ka. (5.33)
For
ak, Bk (k even)
@ f (5.34)
-ak, -gk  (k odd),
Sk,x admits its inverse
1 - xF, XF
-1 _ l k-1 k B B
e T D aF, N I AP LA G ORE (5.35)

where
D= (-)kx? - xL, + 1.
The inverse of Sk,z can be obtained from (l1.7) by replacing f(a) and f(B) with
1/(1 - zok) and 1/(1 - xzB¥), respectively.
It is apparent that the inequality
IX;(k, )| <1 (£ =1, 2)
holds for -0™% <z < o”% [see (5.2)]. Under this restriction, we can calculate

Silx by means of the power series expansion [3]:

Sire = 2 %, . = By, = 10y (ks @] (5.36)

Equating aij(k’ x) and aij(k, x), from (5.36), (5.3), and (5.35), we obtain:

iﬁ@mﬂ=(l—ﬁbﬂw -7k < g < o7k (5.37)
né;)an%n = xF, /D (—a™*k < 2 < a7k (5.38)
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¥ @', _, = (1-aF, )/D (-ak <z<ak), (5.39)
n=0

Combining (5.37) and (5.39), we have

Y 2", = (2 -aL)/D  (-ak <@ <ok, (5.40)

n=0

Setting k 1 and £ = 1/2 in (5.38), we obtain, as a particular case,

Ms

F?’Z
e (5.41)

n

Setting k¥ = 1 and x = 1/2, 1/3 in (5.40), we have

w L,
— =6, 5.42
n‘éo o ( )
and
0 Ln
X m =3 (5.43)
n=0 3
respectively.

6. CONCLUDING REMARKS

While the authors know that a few of the results presented in this article
have been established by others (e.g., [1], [5], [6]), they believe that most
of them are original. Certainly, more possibilities exist than those developed
here. ’

It is possible that some of the work presented above could be extended to
simple cases of three-by-three matrices.

Acknowledgment is gratefully made to the referee whose very helpful advice

has contributed to an improvement in the presentation of this paper.
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