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1. INTRODUCTION 
Consider the sequence of positive integers {wn} defined by the recurrence 

relation 

Wn+2 = PWn + l - Wn C1'1) 
with initial conditions 

wQ = a, w1 - b, (1.2) 

where a ̂  0, b > 1, p > 1, q ^ 0 are integers with p2 ^ kq. We first consider 

the "nondegenerate" case: p2 > 4q. 

Roots of the characteristic equations of (1.1), namely, 

X2 - pA + q = 0 (1.3) 

are 
(a = (p + /p2 - 4q)/2, 

(B = (p - /p2 - 4(7) /2. 

Note a > 0, B < 0 depending on q ^ 0. Then 

a + 6 = p, aB = q, a - B = Vp2 - 4<? > 0. (1.5) 

The explicit Binet form for un is 

w .A*l^|£ (1.6) 

(1.4) 

in which 

= fe - aB s 
1) - aa. ft: 

It is the purpose of this paper to investigate the infinite sums 

(1.7) 

00 -I 

L 7T (1-8) 
n = l wn 

00 -I 

E 7T- (1-9) 

E ^ 1 — • d . io) 
n = lw2n-l 
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Special cases of {wn} which interest us here are: 

the Fibonacci sequence {Fn}i a = 0 9 b = l 9 p = l s q = - l ; (1.11) 

the Lucas sequence {Ln}i a = 2, b = 1, p = 1, q = -1; (1.12) 

the Fell sequence {Pn}: a = Q, 2 ? = l , p = 2, q = -l; (1.13) 

the Fell-Lucas sequence {Qn}: a = 2 9 b = 2 , p=2, q=-l; (1.14) 

the Fermat sequence {fn}: a = 0S b = 1, p = 3, q = 2; (1.15) 

the "Fermat-Lucas" sequence ign}- a = 2, Z? = 3, p = 3, g = 2; (1.16) 

the generalised Fibonacci sequence {Un}: a = 0, b = 1; (1.17) 

the generalised Lucas sequence {Vn}: a = 25 b = p. (1.18) 

The Fermat sequence (1.15) is also known as the Mersenne sequence. 

Binet forms and related information are readily deduced for (.1.11)-(1.18) 

from (1.4)-(1.7). Notice that fn = 2n - 1, gn = 2n + 1, and, for both (1.15) 

and (1.16), a = 2, g = 1, in which case the roots of the characteristic equa-

tion are not irrational. 

Sequences (1.11), (1.13), (1,15), and (1.17), in which a = 0, b = 1, may be 

alluded to as being of Fibonacci type. On the other hand, sequences (1.12), 

(1.14), (1.16), and (1.18), in which a = 2, b = p, may be said to be of Lucas 

type. 

For Fibonacci-type sequences, we have A = B - 1, and the Binet form (1.6) 

reduces to 
_. n r> n 

(1.6) ' 

B = a - 35 we have the simpler 

n a - g ' 
whereas for Lucas-type sequences, in which A 

form 

wn = an + g\ 
From (1.6), 

(1.6)" 

lim 
n ->• oo _1_ 

W„ 
lim 

w„ 

lim 

lim 
4a" 

4an 

4 - 5 (!)" 

'(f)' w + 1 
< 1 

->n + l 

= — since < 1 

a > 1. 

(1.19) 

To prove this last assertion, we note that 2a = p + Vp2 - kq > 1 + 1 = 2. If 

p + Vp2 - 4(7 = 2, then q = p - 1; but q ^ 0, s o p ^ l = ^ p > l = » a > l . 
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Thus, 
oo . 

E — converges absolutely. (1,20) 
n= 1 Wn 

All the sequences (l.ll)-(l.18) satisfy (1.20). 

2. BACKGROUND 

H i stor ical 

The desire to evaluate 

t~ (2.1) 
n = i t n 

seems to have been stated first by Laisant [21] in 1899 in these words: 

"A-t-on deja etudie la serie 

1 I I 1 I 
1 1 2 3 5 •••' 

que fovrnent les inverses des termes de Fibonacci3 
et qui est evidemment oonvergentel" 

Barriol [3] responded to this challenge by approximating (2.1) to 10 deci-

mal places: 

L -~- = 3.3598856662... (2.1)' 

which concurs with that obtained by Brousseau ([6], p. 45) in calculating 

400 , 

E j - (2.1)" 
n = 1 n n 

to 400 decimal places. (Actually, in (2.1) f, the first decimal digit, 3, is 

misprinted in [3] as 2.) However, we find in Escott [11] the claim: 
uJfai calcule la valeuv de cette somrne avec quinze decimales 
et verifie les resultats a 1 * aide de la fovmule 

1 = _!__ _ 1 __ (-l)n 

Pn+ l<?n+ 2 

ou v est le n'Leme terme de la sevie de Fibonacci. 

Jfobtiens 3,3598856672-— qui differe du resultat de 
M. Barriol par le 10e chiffre«u 

For the Lucas numbers, the approximation corresponding to (2.1)" given by 

Brousseau ([6], p. 45) is 
400 1 

E ~~- = 1.9628581732... (2.2) 
n = 1 L>n 
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Catalan [9] in 1883, and earlier Lucas [24] in 1878, had divided the prob-

lem of investigating Y,™=1(l/Fn) into two parts, namely, 

00 , 

X) — s expressible in terms of Jacobian elliptic functions, (2.3) 
n = 1 hln-\ 

and 

X -p,—? expressible in terms of Lambert series. (2.4) 

«=1 In 

Landau [23] in 1899 elaborated on Catalanfs result in the case of (2.3) by 

expressing the answer in terms of theta functions. 
Moreover, Catalan [9] also obtained an expression for 

E r- (2.5) 
n = 1 Xj'in 

in terms of Jacobian elliptic functions. No mention in the literature avail-

able to me was made by Catalan for 

^ l (2.6) 
« = 1 L2n_1 

Results for Pell and Pell-Lucas numbers corresponding to those in (2.3)-(2.6) 

were obtained in [26] by Horadam and Mahon. 

For a wealth of detailed, numerical information on the matters contained 
j 

in, and related to, (2.3)-(2.6), one might consult Bruckman [7], who obtained 

closed forms for the expressions in (2.3) and (2.5), among others, in terms of 

certain constants defined by Jacobian elliptic functions. 

Observe in passing that in (2.5) the value n = 0 is omitted in the summa-
tion even though L = 2 (^0). We do this for consistency because, in the non-

Lucas type sequences, a - 0 (i.e., WQ = 0, so l/wQ is infinite). 
From (1.6), 

co 1 oo -j oo r>n 

E 77- = (a - 3) E = (a - B) £ - (2-7) (a -

(a -

(a -

3) E = 
n = 1 4 a n - 5 3 " 

on 
3) E § 

n = 1Aqn - B$2n 

n = 1 qn - (B/A)8 

(a - 3) E ~ 
n = 1Aan$n • 

by (1.5) 

2n 

- £3 2 n 

At this stage, we must pause. The algebra^ it appears, is too fragile tO 

bear the burden of both qn and B/A being simultaneously unrestricted, so some 
constraints must be imposed. 
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Clearly, the evenness or oddness of n is important since qn will alternate 

in sign if q < 0. Following historical precedent as indicated earlier, we find 
it necessary to dichotomize wn into the cases n even, n odd. 

Furthermore, the outcome of the expression on the right-hand side of (2.7) 

depends on whether B/A (or A/B) is >'0 or <0. 

For our purposes, two specific values concern us, viz., 

A 

S B 

= ±1. 

From (1.7), A/B = 1 means that 
b - aa = b - a& (a ̂  3), 

whence 

a = 0 
without any new restrictions on b, p9 or 

terion for (1.6) ; (i.e., b = 1), we have 
Combining this fact with the cri-

a = 0, 1 =>A = B = 1. 

Sequences satisfying the criteria a 
quences. 

B ' 

0, & 

(2.8) 

1 are the Fibonacci-type se-

In this case, (1.7) gives 

b - aa = -(b - a£>) 
ap 

b = by (1.5) 

= p if a - 2. 
Relating these criteria to (1.6)", we see that 

3. (2.9) a = 2, b=p=>A = -B = a 

Sequences which satisfy the criteria a = 2, b = p are the Lucas-type se-
quences. 

Having set down some necessary background information, we now proceed to 

the main objective of the paper, to wit, the application to our summation re-

quirements of Jacobian elliptic functions and Lambert series. 
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3. JACOBIAN ELLIPTIC FUNCTIONS 

In Jaoobian elliptic function theory* the elliptic integral constants (see 

[7], [18]) 

7, C'2 tit 
K = I (3.1) 

Jo Vl - k2 sin2 t 
and 

f77/2 At 
^ = J — : = - ( 3 . 2 ) 

J o Vl - k!2 s i n 2 t 
are related by 

k2 + kf2 = 1, (3.3) 

kf being the complement of k. 
Write 

v = g-̂ '71"̂  (0 < v < 1). (3.4) 

Jacobi?s symbol q [17] is here replaced by P to avoid confusion with the 

use of q in the recurrence relation (1.1). 

Two of Jacobi?s summation formulas [18] required for our purposes are 

2K_ = 4r 4P2 4P3 

TT 1 + p 2 1 + p^ 1 + p6 1 + T - ~ ^ + l-:i^TX + l - ^ X + ••' (3.5) 

and 
2kK 4Vp , 4Vp"3~ , 4v9s , ,0 ,. 
T~ = rT7 + T T ^ + I ~ T ¥ ? + ••• • (3.6) 

Now5 from (1.6). 

_ 1 _ = 9L^_§ (3.7) 

g2«-l 

= (a - g)- — ~ • if A = 5 = 1 
(a3)2n _ 1 - 3"n"2 

82n~2B = (a - g) • — ^ — — - — if q = -1 in (1.5) 
-1 - g^"2 

= (a - g) • VP • "~^—^"7 w i t h ( ̂  = g2 (g < 0) 
1 + 2?2'2"1 fv£ = -g, so 0 < V P < 1. 

Hence, V 

£ — — = (a - B) • i/r £ — (3.8) 
^ " »-l l + r2»-l 

= (a - 6) ••^••-^ from (3.6) 

/~2 T KK 
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Since the restrictions placed in W2n-i ^n (3.7) are A = B = 1 and q = -1, 
formula (3.8) applies to sequences such as the odd-subscript Fibonacci (2.3) 

and Pell sequences. Accordingly, 

^ yJ— = ̂ r by ( 1 - n ) (3-9) 
n- 1 E in - 1 

and 
J2kK ± —L_ = ̂ M by (1.13). (3.!0) 

Because p = 32 is different for {Fn} and {Pn}, the term fc£ is different in 

(3.9) and (3.10). 

Result (3.9) is not new and may be found in Catalan ([9], p. 13) while re-

sult (3,10), obtained by the author, appears in [26]. Bruckman ([7], p. 310) 

gave 
00 1 

E T ~ — = 1.82451515... (3.9)f 
n = l* 2n-l 

while Bowen [4] obtained 

L l = 1.24162540... . (3.10)' 

n = 1 F2n - 1 

Next, from (1.6) again 

1 a - B (3.11) 
'2« A(am __ (B/i4)g2«) 

Q2n 

(aB)zn + 

oln 

1 + &*» 

2n I nhn 
if A = -B = a - B [cf. (2.9)] 

if q = ±1 [cf. (1.5)] 

where ( r = B2 (B < 0 if q = -1) 
1 + p2n |v£ = 

whence 

£ 77- = |(lT ~ X) by (3.5). (3.12) 

Under the constraints imposed on W2n in (3.11), namelyA/5 = -1 and q = ±1, 
formula (3.12) applies to even-subscript Lucas (2.5) and Pell-Lucas sequences 

(with q = -1). Consequently, 

± i = i ( f - i ) (3.i3) 
and 

£ 1 1 ^ . ! ) , (3.14) 
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the K being different in the two cases, since r = £>2 is different for {Ln} and 

{Qn}. However, notice that K in (3,9) [(3.10)] is the same as that in (3.13) 
[(3.14)]. Excluded from the summations are l/LQ = l/Q0 = 1/2. 

Result (3.13) occurs in Catalan ([9], p. 49) while (3.14) is given in [26]. 

Using essentially the same method, but checking results by a different method, 

Bruckman ([7], p. 310) has calculated 

E 7^- = 0.56617767... (3.13)' 
n = lL2n 

and Bowen [4] found 

E 7T~ = 0.20217495... . (3.14) ' 
« = i y2n 

Microcomputer calculations recorded above, and subsequently, which are due 

to my colleague, Dr. E. W. Bowen, are acknowledged with appreciation. All his 

computations were obtained using the recurrence relations for the sequences. 

Some of the numerical summations were found manually, to a lesser degree of 

accuracy, by the author. 

Further standard information on Jacobian elliptic function theory may be 

found in Abramowitz and Stegun [1] and in Whittaker and Watson [29]. 

4. LAMBERT SERIES 

The first reference to the series known as the Lambert series occurs in 

Lambert [22]—hence the name. 

A "Lambert series" is a series of the type 

n= 1 l x 

Detailed information about Lambert series is to be found in Knopp [19] and 

[20], Interesting number-theoretic applications (to primeness and divisibil-

ity), depending on the value of an> and some basic theory, are given in Knopp 

[20]. 

More particularly, we speak of the Lambert series 

L(x) = ± - j - ^ - \x\ < 1. (4.2) 

A generalized Lambert series used in Arista [2] is 

L(a, x) = E 1 n \x\ < *> \ax\ < l> (4.3) 
n = 1 l "" ax 
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where the number a has nothing to do with the initial value in (1.2). The 

series in (4.2) and (4*3) may be shown to be absolutely convergent within the 

indicated intervals of convergence. 

(4.4) 

From ( 1 . 6 ) , we have 

1 a - 3 
W2n A(a2n - (£M)32") 

nln 
= (a - 3) E 

(a3)2n -
82" 

= (a - 3) • — • 
1 - 3"*" 

/ B2n 

- Co, - PM P 

3"n 

$kn ^ 

if A = B = 1 

if q = ±1 

>2n 

00 i I oo nln oo o4n I 

E 77- = (a - ex E —s E — >' (4.5) 
n=l win ^ = 1 1 - g2n n = l l _ ĝ n i 

= (a - B){L(B2) - MB")}. 

To obtain (4.4) it was necessary to impose the conditions A = B = 1 and q = 
±1. Accordingly5 we can apply (4.5) to the even-subscript Fibonacci (2.4) and 

Pell sequences (where q = -1). It follows that 

/5\ T(l - 3v/5> = V D | ^ 
In .f^-^KH^M^)] 

and 
00 -I 

L -=±- = 2v/2[L(3 - 2^2) - L(17 - 12/2)]. (4.7) 
n = l r 2n 

Formula (4.6) has been known for a long time (cf. Catalan [9]), while (4.7) 

appears in [26]. 

It is known [4] that 

00 1 
E -w— = 0.60057764... . (4.7) ' 
rc = l ^2n 

Brady [5] extended (4.6) to the summation E ~ = 1 (1/F2kn^ and exhibited the 

graph of the function y = L(x) for \x\ < 1. 

Let us now take a special case of {wn} which generalizes the Fibonacci se-
quence. Suppose in (1.1) we have p = l, g = -l,. and retain the initial values 

to be a and b. Call this sequence {Hn}9 i.e., HQ = a, H^ = b. We impose the 

further condition: b >'aa, where a = (1 + v5)/2. 
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Write 

H 
aa 

/ 1 + A/5 a 1 - v5\ 

Paralleling the argument in (4.4), we have 

1 _ (a - 3)32n -R o2n 

H 2n 4[(ag)2n 

75 
A(I/JH) I - (1/^)3 

(B/A)^n] A 
1 

so that 

n = 1 "-in Mi-
y/AB{n = 1 1 

/5 

(l/v^)B2n 

- d/V^)g: 

(1/5)3"" 

( 1 / ^ ) 3 ^ _ 
- (l/v£)32* 

f; (l/g)3"n 

« = 1 1 - (1/H)$kn 

(4.8) 

(4.9) 

(1/ff) ihn 

1 - (1/5)3^ 

(4.10) 

Jb* ah i f e 31 ~L^' ^} by (4-3)' 
wherein l/HQ has been omitted from the summation because a may be zero. 

In (4.10), the conditions imposed in (4.3) are met, since 

< 1 
and 

whence 
fr i b - a$ < l 

-0.618. 

(a > 0, (3 < 0, b > aa) 9 

< 1; also5 < 1, H B* < 1. 

Shannon and Horadam [28] obtained a variation of (4.10) by using a differ-

ent pair of specially defined generalized Lambert series, whereas Aristafs 

generalization (4.3) has been utilized in (4.10). 

Observe that VAB in (4.10) must be real, i.e., AB > 0. So (4.10) excludes 
Lucas-type sequences with a = 2, fc = 1, 2, or 3, for which a Jacobian elliptic 

expression is required in the answer. 

Suppose we introduce a generalized Pell sequence {Kn} in which p = 25 q = 
-1, b > aa, where a = 1 + v2. Then, by reasoning similar to that used to es-

tablish (4.10), we can determine a resolution of H™s=1(l/K2n) in terms of gen-

eralized Lambert series (4.3). 

Let us now revert to the odd-subscript series contained in {Ln} and {Qn}* 
More generally, from (l«6)"9 we have 

i _ i e2"-1 

w 2n-l (ag): 

for 
1988] 

ihn -2 
= -1 by (1.5), 

(4.11) 
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whence 
oo i oo o 2n - 1 

E 7~— = ~ E = -£(B) + 2L(32) - L(^), (4.12) 
n = l ^2n-l n=l Q „ g^"2) 

after some algebraic manipulation. 

Thus, for appropriate 3, expressions in terms of Lambert series as special-

izations of (4.12) are found for 

JL (n _ 1 - y/l\ 
n = 1 ^ 2n -1 

and 
^ 1 

I = 1 -^ o~ _ i \ l I 

(B = 1 - ^ 2 ) . (4.14) 
n = 1 ^ 2n - 1 

Bowen [4] ca l cu l a t ed 
00 , 

E 7; =0.58614901952408. . . (4 .14) f 

" = 1 H2n-\ 

Furthermore, it was computed in [4] that 

E 4- = 1.8422030498275... (4.15) 
n = 1 -̂ Vz 

and 
E TT = 0.7883239758197... . (4.16) 

Addition of (4.7)' and (3.10) ' verifies (4.15), while addition of (3.14) ' 

and (4.14)' leads us to (4.16). 

To complete this section, we revert to an extension of {Un} (1.17) which 

Arista [2] examined in some depth. In his investigation, Arista imposed no 

restriction on q other than that it is a positive or negative integer. To 

avoid confusion with our notation, we will designate the sequence studied by 

Arista as {un}, where uQ = 0, u = 1, q being a positive or negative integer. 
Further, we will retain the condition p2 > hqy to avoid complex expressions, 

along with p ̂  1. 

Changing to our notation, we record Arista's conclusions. 

22\h 

\q~) 
n=1 un fo = o 

1 - -

since < 1, < 1 [q = a3 (1.5)]. 

If q > 0, then (3/a > 0, and Arista showed that (4.17) is then expressible 
in terms of a complicated definite integral involving logarithmic and trigono-

metrical functions. 
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When q < 0, 

which again leads to a lengthy expression containing indefinite integrals of 

the kind mentioned above. 

Finally, the "degenerate" case in which the roots a, (3 are equal is con-

sidered as a limiting process to produce 

In the nondegenerate case (a 4- 3) Arista [2] also studied the consequences 
of x ->- 1, and of \a\ < 1. It is interesting to discern the usage made by him 

of the relevant researches of earlier and contemporary mathematicians, e.g., 

Cesaro [10], Schlomilch [27], and Catalan, intev alia. 
Lucas [25] undertook to give plus tard (analogous) formulas deduced from 

the theory of elliptic functions, "et, en pavticuliev, les sommes des -inverses 
des termes Un et de leurs puissances semblables". Writing a quarter of a cen-

tury afterwards, Arista [2] remarked a pvopos this undertaking: "... ma non 
esiste alcuna sua pubblicazione su questo avgomento"'. 

5. APPLICATION OF METHODS OF GOOD AND GREIG 

In this section we wish to develop some interesting techniques for summing 

reciprocals when the subscript of w (and of its specialized sequences) is not 
ns 2n, or In - 1, but is some related number. 

Following an approach for Fibonacci numbers due to Good [12], we establish 

the corresponding result for Pell numbers: 

E 4- =2 - p 2 - - i / p
2 » - ( 5 - 1 } 

777=0 ^2n 

Proof of (5-1): The proof is by induction. 

When n = 1, the result is obviously true, since 

Assume it is true for n = k. Then the validity of (5.1) for n = k + 1 requires 
that 

P IP - P IP = — - — . 
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This is readily demonstrated by using the Binet form for Pn [cf. (1.6) f and 

(1.13)]. Thus, (5.1) is proved. 

Now let n •* °°. If, temporarily, N = 2n, then lim(P„ ,/Pw) = 1/a = /2 - 1. 

Hence, (5.1) yields 

f: ^— = 3 - / 2 . (5.2) 
m = 0 2m 

This might be compared with the corresponding value for Fibonacci numbers 

(Good [12]—-see also Gouldfs reference [13], p. 67, to Millin): 

m = 0 r 2m 

Next, following the method and notation of Greig [14] for Fibonacci num-

bers, adapted for Pell numbers, let us write b = 2m, B = 2n. Then we may show 

that 

t ~~= 0k ~ PkB^/PkB (n9-k> 1), (5.4) 
m= 0 ̂ kfo 

where 
((1 + Pv J/P, for fc even, 

Ck=\ ^ (5.5) 
1(1 + Pk-1)/^k + 2/P2A, for fc odd, 

i.e., Ck is independent of n. 

Proof of (5»^)^ Again, the proof is by induction. 

Assume (5.4) holds for a given n. Then its validity for n + 1 requires us 
to show that 

P2kBPkB - 1 " PkBP2kB -1 = PkB ( 5 ' 6 > 

or, more succinctly, on writing j = feB, 

p
2/i-i -p; p

2;-i - ( " 1 ) J p i - (5'6)' 

This may be demonstrated by appealing to the Binet form for Pn . 

[Alternatively, we may use 
•Ph + 1Pj + P . P . . , - Ph + i ih = -2J, P_n = ( -D" + 1 P n ) . ] (5.6) ' ' 

Put n = 1 in (5.4) . Then 

1 + P 
c » - ^ + - ^ r - (5'7> 

((1 + P X)/P, when /c is even, 

1(1 + Pk_1)lPk + 2/p
2k
 when fe is odd-

To obtain (5.7), we employ the Binet form in 

1 P2k-1 Pk-1 { ° ± f fe 1 S e V e T l 3 

^ - + _^_I_ J î = ) (5.8) 
^2?C ^2fc *fc ) _ £ - i f £ i s odd. f M 
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Our proof of (5.4) is now complete. 

The first few values of Ck are calculated from (5.7): 

Cx = 2, C2 = 1, C3 = § , CH = { , C5 = ̂ , ... . (5.9) 

Let n -> °oB Then (5.4) becomes 

£ = (7 _ s (5el0) 
w= 0 rk • 2m a 

since lim(-p^) = ̂  (j = kS = fc • 2n; a = 1 + i/2). 
j 

Observing from Gould [13] and Greig [14] that for k > 0, m > 0, (2fe + 1)2W 

generates each positive integer just once, we have (cf. [14]) that 

E ~ = E t~~= t (ck~~) (^ = — 1 — = ^ - iV (5.1D 
fc = l 777=0 Fkb k = l X K a / \ a 1 + Jo I 

k odd fc odd 

p 
n = 1 x 7-2 fe 

Summing the right-hand side of (5.11) as far as k = 15 (at which stage C15 -

1/a = 0.000005. . .) , we find the value to six decimal places to be 1.842202... 
20 

which concurs with the summation of J2 =1(1/Pn). From these computations, we 

can state that 

E ~ = 1.842202... (5.12) 
n = l ^n 

approximately to six decimal places. See (4.15) for a slightly more accurate 

value. 

One may observe that Ck -> 1/a as k -*• °°  on using the Binet form in (5.7), 
whence it follows that Ck + 2/Ck -> 1/a2 as k -> °°. This gives us an estimate for 

Ck+2 when Ck is known, which increases in accuracy as k increases in value. 
If one tries to parallel the above work for {Qn}, one finds that the pres-

ence of the plus sign (rather than a minus sign) in the Binet form [cf. (1.6)" 

and (1.14)] causes the straightforwardness of the treatment, e.g., at the stage 

(5.6), to collapse. A similar remark in relation to {Ln} is made by Gould in 

[13], p. 68 (wherein the relation to the Riemann zeta function and to sine and 

cosine expressions is discussed). 

Nevertheless, if we simply take a summation of reciprocals as far as n = 
20, we obtain £° ° =1(1/SW) correct to six decimal places, namely5 0*7883239^ as 

in (4.16). 

Generalizing the results produced above for the Fibonacci-type sequences 

{Fn} and {Pn} to results for {wn} can be accomplished without too much effort. 
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Induction (details of which are available on request) can be applied to 

generate the following chain of formulas: 

t 7 7 - = C - w Iw (5.13) 
m=0 w2m 2 ~1 2 

in which 

where 

and 

1 l + w i 
c-^ + -ur'' (5-u) 

£ ^ - c * - p * . 2 . - i / p * . 2 . {n-k>l) (5-15) 

, 1 + w , ( ( 1 + io> )/w, when A: i s even, 
C k = ± + w

2 k - 1 - \ ^ (5.16) 
k 27i ( (1 + wv_,)lwv + 2/w0V when Zc i s odd; 

m=0 Wfc.2ffl 

where a is given by (1.4) (q = -1). 

Note that, in (5.14), 

C = 3 for Fibonacci numbers, C = 2 for Pell numbers. 

For a generalization of (5.14) and (5.11), the reader might consult Greig 

[15]. Entries in row 2 of his table ([15], p. 257) give ratios of Pell numbers 

which are our 6T1, C2, C3, ... in (5.9). 

6. GENERALIZED BERNOULLI AND EULER POLYNOMIALS 

In this final section, it is desired to find a suitable form for the ex-

pression of w'^ and for the generating function of {w~n }. The results gener-

alize material in [26] which itself extends the work in [28]. 

First, we define the generalized Bernoulli polynomial B^(x) by 

and the generalized Euler polynomial E^(x) by 

XE?\xfc = -^-—. (6.2) 

When t = 1, Bp (x) = Bp(x) and E^(x) = Er(x) are the ordinary Bernoulli 

polynomial and Euler polynomial, respectively. Let 

C = -. (6.3) 
a 

112 [May 



ELLIPTIC FUNCTIONS AND LAMBERT SERIES 

Temporarily write 

m = n log C (i.e., Cn = em). (6.4) 

From (1.6)', for Fibonacci-type sequences, 

~ - (3 ~ «)* • — — ^ (6.5) 
wn an*(C" - 1)* 

(3 - «)*•£** 

{Cxat)n{Cn - 1)* 

- (B - a) t 

mt{Cxat)n (em - 1)* 

introducing the variable x 

by (6.4) 

_ (3 - a)* v v(t),,mp 

= 1, Br («)~7 by (6.1), 

m (Cxa ) *-°  rl 

whence arises the generating function 

t ± y" - (3 - «)* t B^^f* t »*-*(-̂ -)B. (6-6) 
Putting t = 1 in (6.5) gives 

This expresses the reciprocal of appropriate wn in terms of the Bernoulli 

polynomial. 

A chain of results similar to (6.5)-(6.7) may be obtained from (1.6) and 

(6.2) for Lucas-type sequences. We then obtain an expression for the recipro-

cal of appropriate Wn in terms of the Euler polynomial. 
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