ON CERTAIN DIVISIBILITY SEQUENCES

R. B. McNEILL

Northern Michigan University, Marquette, MI 49885 (Submitted May 1986)

In [1], Marshall Hall defined U_n to be a divisibility sequence if $U_m | U_n$ whenever m | n. If we let $U_n = A^n(c_0 + c_1 n)$ for integers A, c_0 , and c_1 , then a corollary to the theorem in [2] is that U_n is a divisibility sequence if and only if exactly one of the coefficients c_0 or c_1 equals 0. The purpose of this paper is to establish a similar result for $U_n = A^n(c_0 + c_1 n + c_2 n^2)$.

Theorem: Let $U_n = A^n(c_0 + c_1 n + c_2 n^2)$ for integers A, c_0 , c_1 , and c_2 . U_n is a divisibility sequence if and only if exactly two of the coefficients c_0 , c_1 , and c_2 are 0.

Proof: It is easy to see that, if exactly two of the coefficients c_0 , c_1 , and c_2 are 0, then U_n is a divisibility sequence. Consequently, in what follows, we assume that $A^m(c_0+c_1m+c_2m^2)|A^n(c_0+c_1n+c_2n^2)|$ if m|n, and, without loss of generality, that A>0.

Case 1: $c_0 = 0$

Assume $c_1 \neq 0$, for, otherwise, we have $c_0 = c_1 = 0$ and $c_2 m^2 A | c_2 n^2 A$ if m | n, and we are finished. Replace m by $c_1 mA$, n by $c_1 nA$, and let $e = c_1 A (n - m)$. Then we have $(c_1^2 mA + c_2 c_1^2 m^2 A^2) | A^e (c_1^2 nA + c_2 c_1^2 n^2 A^2)$ if m | n. Consequently,

$$(m + c_2 m^2 A) | A^e (n + c_2 n^2 A) \text{ if } m | n.$$

In particular,

$$(1 + c_2A) | A^e(n + c_2n^2A).$$

If $e\leqslant 0$, then $(1+c_2A)\,\big|\,(n+c_2n^2A)$ is immediate, while if e>0, since $\gcd(1+c_2A,\,A^e)=1$,

we also have $(1 + c_2 A) | (n + c_2 n^2 A)$.

Set n=2. $(1+c_2A) | (2+4c_2A)$. Since $2+4c_2A=2(1+c_2A)+2c_2A$, we have $(1+c_2A) | 2c_2A$, which implies that $(1+c_2A) | 2$; hence, $1+c_2A=\pm 1$ or ± 2 . $1+c_2A=1 \Rightarrow c_2=0$, and we are finished.

 $1+c_2A=-1\Rightarrow (m-2m^2)\,\big|\,(n-2n^2)$ if $m\,\big|\,n$ and m is odd, which is false for $m=3,\;n=6$.

ON CERTAIN DIVISIBILITY SEQUENCES

 $1+c_2A=2\Rightarrow c_2A=1\Rightarrow (m+m^2)\mid (n+n^2) \text{ if } m\mid n, \text{ which is false for } m=2,$ n=4.

 $1+c_2A=-2\Rightarrow A=1$ or $A=3\Rightarrow (m-3m^2)\left|A^e(n-3n^2)\right|$ if $m\mid n$, which is false for m=5, n=10.

Case 2: $c_0 \neq 0$

Replace m by $c_0 mA$, n by $c_0 nA$, and let $e = c_0 A (n - m)$. This gives $(c_0 + c_0 c_1 mA + c_2 c_0^2 m^2 A^2) |A^e(c_0 + c_0 c_1 nA + c_2 c_0^2 n^2 A^2),$

which implies that

$$(1 + c_1 mA + c_2 c_0 m^2 A^2) | A^e (1 + c_1 nA + c_2 c_0 n^2 A^2).$$

As in Case 1, this leads to

$$(1 + c_1 mA + c_2 c_0 m^2 A^2) | (1 + c_1 nA + c_2 c_0 n^2 A^2) \text{ if } m | n.$$

Select
$$m = 1$$
, $n = 1 + c_1 A + c_2 c_0 A^2$. Then $(1 + c_1 A + c_2 c_0 A^2) | 1$, i.e., $1 + c_1 A + c_2 c_0 A^2 = \pm 1$.

Case a: $1 + c_1 A + c_2 c_0 A^2 = 1$

$$\begin{array}{lll} 1 + c_1 A + c_2 c_0 A^2 &= 1 \Rightarrow A (c_1 + c_2 c_0 A) &= 0 \Rightarrow c_2 c_0 A = -c_1. & \text{Thus,} \\ & (1 + c_1 mA - c_1 m^2 A) \left| (1 + c_1 nA - c_1 n^2 A) & \text{if } m \right| n. \end{array}$$

Set
$$n = 2m$$
. $(1 + c_1 mA - c_1 m^2 A) | (1 + 2c_1 mA - 4c_1 m^2 A)$ if $m | n$, or $(1 + c_1 mA - c_1 m^2 A) | (1 + c_1 mA - c_1 m^2 A + (c_1 mA - 3c_1 m^2 A))$.

Hence,

$$(1 + c_1 mA - c_1 m^2 A) | 2(c_1 mA - 3c_1 m^2 A).$$
 (1)

Set n = 3m. In a similar manner to the above, we get

$$(1 + c_1 mA - c_1 m^2 A) | (2c_1 mA - 8c_1 m^2 A).$$
 (2)

Together, (1) and (2) imply that $(1 + c_1 mA - c_1 m^2 A) | (2c_1 m^2 A)$.

Set m=2. We obtain $(1-2c_1A) \, \big| \, 8c_1A$. But $8c_1A=4-4(1-2c_1A)$, so that $(1-2c_1A) \, \big| \, 4$, i.e., $1-2c_1A=\pm 1$.

 $1-2c_1A=1\Rightarrow c_1=0. \quad \text{Since } c_2c_0A=-c_1, \text{ either } c_0=0 \text{ or } c_2=0, \text{ and we are finished.}$

 $1-2c_1A=-1\Rightarrow c_2A=1\Rightarrow (1+m-m^2)\,\big|\,(1+n-n^2)\text{ if }m\big|n\text{, which is false}$ for m=3, n=6.

Case b: $1 + c_1 A + c_2 c_0 A^2 = -1$

$$1 + c_1 A + c_2 c_0 A^2 = -1 \Rightarrow A(c_1 + c_2 c_0 A) = -2 \Rightarrow A = 1 \text{ or } 2.$$

ON CERTAIN DIVISIBILITY SEQUENCES

Case i:
$$A = 1$$
, $c_1 + c_2 c_0 = -2$

If A = 1, then

$$(1 + c_1 m + c_2 c_0 m^2) | (1 + c_1 n + c_2 c_0 n^2)$$
 if $m | n$.

Let m = 2 and replace n by 2n. Then

$$(1 + 2c_1 + 4c_2c_0) | (1 + 2c_1n + 4c_2c_0n^2).$$

Since $c_1 + c_2 c_0 = -2$, we have

$$(2c_2c_0 - 3) | (1 + 2c_1n + 4c_2c_0n^2).$$

Let $n = 2c_2c_0 - 3$. Then $(2c_2c_0 - 3)|1 \Rightarrow 2c_2c_0 - 3 = \pm 1$.

 $2c_2c_0 - 3 = 1 \Rightarrow c_2c_0 = 4 \Rightarrow c_1 = -4 \Rightarrow (1 - 4m + 2m^2) | (1 - 4n + 2n^2) \text{ if } m|n$, which is false for m = 4, n = 8.

 $2c_2c_0 - 3 = -1 \Rightarrow c_2c_0 = 1 \Rightarrow c_1 = -3 \Rightarrow (1 - 3m + m^2) | (1 - 3n + n^2) \text{ if } m|n$, which is false for m = 4, n = 8.

Case ii:
$$A = 2$$
, $c_1 + 2c_2c_0 = -1$

If A = 2, then

$$(1 + 2c_1m + 4c_2c_0m^2) | (1 + 2c_1n + 4c_2c_0n^2)$$
 if $m|n$.

Let m = 2, and replace n by 2n. Consequently,

$$(1 + 4c_1 + 16c_2c_0) | (1 + 4c_1n + 16c_2c_0n^2).$$

Since $c_1 + 2c_2c_0 = -1$, we have

$$(8c_2c_0 - 3) | (1 + 4c_1n + 16c_2c_0n^2).$$

Let n = $8c_2c_0$ - 3. Then $(8c_2c_0$ - 3) $\big| \, 1$, which is impossible.

Remark: It is reasonable to conjecture that

$$U_n = A^n \sum_{i=0}^k c_i n^i$$

is a divisibility sequence if and only if exactly k of the c_i 's are 0. It appears that this general case cannot be proved using the methods in this paper.

REFERENCES

- 1. Marshall Hall. "Divisibility Sequences of 3rd Order." *Amer. J. Math.* 58 (1936):577-584.
- 2. R.B. McNeill. "A Note on Divisibility Sequences." The Fibonacci Quarterly (to appear).

♦♦♦♦