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1. INTRODUCTION 

The sequence {Fn} of Fibonacci numbers is defined by 

F0 = 0, Fx = 1, 

with the recurrence relation 

Fn+2 = Fn+1 + Fn • 

A number of identities for {Fn} are well known. Among them are 

V l * W l " FN = ("Dff a n d Vl̂  + 1 - ̂ - 2 ^ + 2 = ̂ " D " -

These identities were generalized by Harman in [1] by introducing the complex 

Fibonacci numbers. Similar generalized identities involving the combinations 

of the Fibonaccis Lucas, Pell, and Chebyshev sequences were obtained by this 

author (see [2]) by introducing the Generalized Gaussian Fibonacci Numbers de-

fined using Harman?s technique. 

This gave rise to a natural question: Is it possible to achieve similar 

results for the Tribonacci numbers? This paper gives the answer in the affir-

mative. To achieve this* we define in Section 3 the complex Tribonacci numbers 

at the Gaussian integers. Our main result is equation (5*1). 

2. TRIBONACCI NUMBER SEQUENCES 

Denote by {Sn} a sequence defined by the third-order recurrence relation 

given by 

$n+3 = PSn + 2 + Q^n + 1 + RSn. 

We consider the following particular cases of {Sn} and call them the fundamen-

tal sequences of third order. 

a. {Jn} where JQ = 0S J1 = 1, and J1 = P5 

b. {Kn} where ZQ = 1 , 1 ^ 0S and Z2 = 6S 
c. {Ln} where L0 = 09 L1 = 09 and L2 = R. 

If P = § = i? = 1, then {Jn}, {Kn} 9 and {Ln} will be called the special funda-

mental sequences and will be denoted by {J*} 9 {#*}» and {£*}s respectively. 
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The following relations are easily proved: 

Hn + 1 = pjn + K 9 n > 0; 
Kn + 1 = QJn + RJn_l9 n > 1; 
L„ , -, = P J„ , n > 0. 

(2.1) 

(2.2) 

(2.3) 

By (2,3)5 (2.2) can also be written as 

Kn+i = QJn + £*• (2.4) 

It is helpful to know the first few terms of the above sequences. We pre-

sent them in Table 2.1. These sequences have been studied by many researchers 

(see, e.g., Shannon [3], Shannon & Horadam [4], and Waddill & Sacks [5]). 

Table 2.1 

Un) 

{Kn} 

iLn] 

0 

0 

1 

0 

1 

1 

0 

0 

2 

P 

Q 

R 

3 

P2 + Q 

PQ + R 

PR 

4 

P3-t2PQ + R 

P2Q + PR+Q2 

P2R+QR 

5 

Pk + 3P2Q+2PR+Q2 

P3Q + P2R+2PQ2+2QR 

P3R + 2PQR + R2 

6 

P5 + hP3Q + 3P2R + 3PQ2 4- 2QR 

PhQ + P3R+ 3P2Q2 + hPQR+ Q3 + R2 

PkR-h 3P2QR+ 2PR2 + Q2R 

3. DEFINITION 

Let (n9 m) , ns 777 € Zs denote the set of Gaussian integers (n9 m) = n + im« 

Let £ : (n, 772) -> £9 where £ is the set of complex numbers, be a function defined 

as follows: 

For fixed real numbers P9 Q9 and R9 define 

(G(09 0) = 03 G(l, 0) = 1, G(2, 0) - P 

;o, 1) = i9 (7(1, 1) = P + iPs G(2, 1) - P2 + i(P2 + 6) (3.1) 

{G(0S 2) = iP 9 G( l , 2) = P 2 + C + i P 2 . ^ (2 5 2) = P3 + PS + i ( P 3 + P 0 
with the following conditions: 

G(n + 35 777) = P(7(n + 2S m) + §£(n + 1, 777) + P£(n, w) , (3 .2) 
and 

Girt, m + 3) - P£(n9 w + 2) + $G(w, 77? + 1) + RG(n9 m). (3.3) 
The conditions (3.2) and (3.3) with the initial values (3.1) are sufficient to 

obtain a unique value for every Gaussian integer with nonnegative values for n 

and 777. 

4. RESULTS CONCERNING G(n9 m) 

Lemma 4,1: G(n9 0) and £(0, m) are given by 

G(n9 0) = Jn9 and G(09 m) = ie7w: 

Proof: The proof is simple and hence omitted. 

(4.1) 
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Theorem 4.2: Gin, m) is given by 
Gin, m) = J J ,, + iJ _,nJ. (4.2) 

Proof: Although an elegant proof can be given by using the technique of mathe-

matical induction9 we give another below, which although not so elegant brings 

out more clearly the interaction. We have: 

Gin, rn) = PG(n - 1, m) + QG(n - 1, rn) + RG(n - 3, rn) 

= P{PG(n - 29 rn) + QG(n - 3, m) + RG(n - 4, m)} 
+ fiG(n - 2 , 777) + i?G(tt - 3, 77?) 

= (P2 + <2)G(n - 29 ???) + (P§ + R)G(n - 3, TT?) + PP£(^ - 4, TT?) 
= J3G(n - 29 TT?) + K3G(n - 3, TT?) + L3^(n - 4, m) 
= J3[PG(n - 3, TT?) + Q£(n - 49 m) + RG(n - 5, TT?) ] 

+ X3£(n - 3, m) + L3G(n - 49 TT?) 

= (PJ3 + K3)G(n - 3, TT?) + (QJ3+L3)G(n - 49 TT?) + RJ3G(n - 5, TT?) 

Now we make use of (2.1), (2.4), and (2.3) to set 

Gin, TT?) = JhG(n - 3, m) + KhGin - 4, m) + L ^ n - 5, TT?). 

Continuing this process, we finally get 

Gin, TT?) =e7n.1G(2, m) +£n-1G(l, TT?) + £^£(0, TT?) . (4.3) 

We apply the same technique for Gil, m) , Gil, m) , and £(Q, TT?) to get 

£(2, m) = Jm^G(29 2) + XW-1G(2, 1) + ̂ . ^ ( 2 , 0) , 

G(l» w) = e ^ . ^ d , 2) + ^ . ^ ( 1 , 1) + Lm_1G{l9 0 ) , 

and GiO, rn) =Jm_1GiO, 2) + Km^G(09 1) + L m _ ^ ( 0 9 0 ) . 

Then ( 3 . 1 ) g i v e s 

(Gil, 77?) = {P3 + PQ + HP3 + PQ)}Jm^ + [P 2 + HP2 + Q)]Km.1 + PLm.x, 

\Gi\, TT?) = (P 2 + Q + iP2)Jm.^ + (P + i P ) ^ . ! + A , - i > and ( 4 . 4 ) 

((7(0, m) = i P ^ . x + i Z ^ . 

S u b s t i t u t i n g t h e v a l u e s of £ ( 2 , m) , Gil, m) , and (7(0, TT?) from ( 4 . 4 ) i n t o ( 4 . 3 ) 

and s i m p l i f y i n g , we g e t : 

Gin, TT?) = { ( P 3 + P e ) J n _ 1 + (P 2 + « ) £ „ _ ! + i [ ( P 3 +PQ)Jn_1 
+ P Kn_1 + P L n _ 1 ] } J m _ i 

+ { P V n _ x + P Z n _ x + ^ [ ( P 2 + Q)Jn.1 + P Z n _ x + Ln- lHt f /n - l 

+ {PJ n + ZM n }Pm 1 
n-1 n-1 m - 1 

Using equations (2.1)-(2.4), we obtain: 
G(n, m) = Jm_x{P'lJn + QJn + i(P2Jn + PKn)} 

+ Km.x{PJn + i[PJ„ + Kn]} + Lm_1Jn 

+ iKn{PJm_x +Km_1} 
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Theorem 4*3: For fixed n, m (n, m = 0S 1, . . .) , the recurrence relation for 

G(n9 m) is given by the following: 

G(n + k, m + k) = (P + iP)ZQk~%+<Jm + j 
J' = I 

(4.5) 

+ P 

[fc/2] 
L j = i 

^ 2 + 2j - S^77+ 2j - 2 - S 

+ 
J = l 

} ^ - 2 j + l - s 
» + 2 j ' - 3 + s w + 2 j - 1 + < 

[&/2] 
+ E 

J = l 

[fc/2] + £ 

E 
. J = I 

1 k - 2 j + s 
Jn+ 2 j - 2 - s ^m + 2 j - s 

1k- 2j+ 1 - s 
X n + 2j - 1 + s"m+ 2rj - 3 + s 

nkjG(n9 m)9 if k is even 
^ }G(m9 n)9 If k is odd, 

where s • f O , i 
U, i 

if fc i s even 
f k i s odd and [/</2] denotes the greatest integer function. 

Proof: Fix n and m. From (4.2) , we have: 

G(n + l5 m + I) = Jn+1Jm+2 + iJn + 2Jm+1 

By algebraic manipulation and interchanging n and m In (4.2) , we get 

G<« + 1, m + 1) = (P + iP)Jn+1Jm+1 + RJn+1Jn^ 

+ iRJn.1Jm+1 + GGfa, w). (4.6) 

Similarly, we have 

G(n + 2, m + 2) = (P + iP) [Jn+2J"m+2 + ft7n + 1 J O T + 1 ] 

+ mjnjn+2 + QJn+1Jm-J + e 2 ^ > *)• < 4 - 7 ) 
(4.6) and (4.7) show that (4.5) holds for /c = 1 and k = 2. Now, suppose (4.5) 

holds for the first k positive integers. We prove that then it also holds for 
the integer k + 2. Now, although n and m are assumed to be fixed in (4.7), it 

is clear that (4.7), in fact, is true for any positive integers n and m. Thus, 

replacing n and m by n + k and m + k9 respectively, in (4.7), we get: 

G(n + k + 2, m + fc + 2) = (P + iP) [̂  + fe+2^z + fe+2 + &W+A+fe+J 

+ ^^n + k+2^m+k + QJt+k- l^m+k+J 

+ S2G(n + fc, m + fc) 

Substituting for G(n + k, m + k) from (4.5) , we get: 
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G(n + k + 25 m + k + 2) - (P + iP) [Jn + k+ 2Jm + k + 2 + QJn+k+lJm + k+i\ (4-8> 

+ i ? [ 4 2 + f e + 2 /̂77+A: + Q^n + k- l^m+k + J 

+ ii?[J„ + ^J"m + k + 2 + QJn + k+ xJm +k- \1 

k 
+ Q-UP + iP) EQk~%+jJn 

3-1 
jdm + j 

+ R 

[k/2 

[k/2] + s 7 o . 

^ dn+2j - sdm + 
3 = 1 

2j - 2 - s 

4. V nk~23+l~sT T 
^ 2^ ^ e / " + 2 j - 3 + e e / m + 2 j - l + f J = l 

+ i P 

[k/2 

[k/2]+8 -, _ . 

E e""2j + 

L J = I 

-,&- 2 j + l - s j 

^ + 2 j - 2 - s^w + 2j - s 

+ S ^ J ^ + 2 j - l + s c 7 m + 2 f 7 - 3 + s 
J = l 

+ «' :
(G(n9 m) , 
V(m, n), 

k even ' 
fc odd i 

We observe the following on the right-hand side of (4.8): 

The coefficient of P + iP is 

^n + k+2^m+k+2 + ^n+k+l^m + k+l + E 
3 = 1 

n f c + 2 - j 
< î + j JT J°m + J 

k+ 2 

E-
J = I 

} k + 2 - j* 
Jn + j^m + j ' 

The c o e f f i c i e n t of i? i s 
[Zc/2] + s fc+2_2j-+s 

c 4 + k + 2 J m + £ + & ^ H - f c - l ^ n + f c + 1 + E 6 ^ + 2 ^ - 5 ^ + 2 ^ - 2 - 3 
J = l 

3 = 1 
^n + 2j - 3 + s^ra + 2j - 1 + s ' 

O b s e r v i n g t h a t , i f j = [fc/2] + 1 + s and j = [fe/2] + 1, 2j = k + 2 + s and 

fc + 2 - s , r e s p e c t i v e l y , where s i s a s d e f i n e d b e f o r e , we s e e t h a t : 

The c o e f f i c i e n t of R i s 

[k/2] + 1 + 8 
E Qk+2'2J' + S-

3 = 1 

+
 lTV—-., J - l 

^ + 2j ~ s^m +2j - 2- s 

'n + 2j - 3 + s m + 2j - l + s' 

S i m i l a r l y : 

The c o e f f i c i e n t of %R i s 
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[&/2] + 1 

^n +2j - 2- s^m+lj- s + 2 * 
J = l 

1k+3-2o~sJ T 

* dn + 2j - 1 + s^m + 2j - 3 + s ' 

The last term is 

(G(n9 m) , k even, 

{G(m9 ri), fc odd, 

These coefficients are exactly the same as those, respectively, on the right-

hand side of (4.5) with k replaced by k + 2. This completes the proof. 

IDENTITIES FOR M 
Equating the real parts of (4.5), and making use of (4.2), we get: 

PEQk~% + jJn 
J = l 

J m+ j + R 
~[k/2] + 

E 
. J = I 

^ - 2 j -
n+ 2j - s^m+ 2j - 2- s (5.1) 

[fc/2] 
+ E 

J = I 

-,£:- 2j'+ 1-s 
^w + 2j - 3 + s^m + 2j - 1 + i 

^n+k^m+k+l ' $ Jn+s^m+l-

Remark 1: Equation (5.1) gives the sum of 2k terms as that of just two terms. 

Note that equating the imaginary parts of (4.5) gives (5.1) with 777 and n inter-

changed and, therefore, effectively the same equation. 

We now consider some special cases. 

6„ SPECIAL CASES 

(A) m - n 

Putting s = 0 and s = 1, in turn, for k even and k odd, respectively, we 

readily observe that, for both even and odd k9 (5.1) reduces to a single equa-

tion given by 

J = 1 «/ = 1 

(B) m = n = 0 

With these values of m and n9 (6.1) reduces to 

JnJn+ 1 (6.1) 

0-1 J 1=1 

(6.2) 

(c) 1, m 

Equation (5.1) takes the following forms 
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{'|V-%-
r / c + l " ^ 

fc+l " RJk+lJk> 

• 2+2s [ S ^ 2 j - 1 - 2s 

if fc i s even9 

_2 if k i s odd. 

Remark 2: Various other identities may be obtained for other choices of m and 
n. Thus, equation (5.1) provides an abundance of identities. 

Remark 3- IfP~Q=R=l3 the identities in Sections 5 and 6 reduce to those 

for the "special fundamental sequences." It is interesting to compare these 

identities with similar ones for Fibonacci sequences. For examples for n - 0, 
m = 0, (6.2) becomes 

k 2 k 

£. Jd + £ ^ 2Jj = JkJk + 1 > 
J ~ ± J •*• 

and for n = 1, m = 0, (6.3) 

fc [k/2] 

( T*2 -

reduces to 

T T* 4 - 7 * 
• 2 + 2 s ld2j- 1 - 2s T e / 2 j + l - 2 e 

1, if fe i s even, 

Similar identities for the Fibonacci sequence are 

k 

and 
k iFk+i " 1» i f fc i s e v e n> 

*̂ = 1 J J + 1 l ^ + i ' if fe ^ odd. 
(See [1].) 

Remark hi If R = 0, the sequence {Jn} reduces to the sequence with second-order 
recurrence relation. If, in addition, P = p and Q = -q, {Jn} becomes Lucas's 
fundamental sequence [2]. If P = 1 and Q = 1, {Jn} reduces to the Fibonacci 

sequence. In these cases, equation (5.1) and the rest of the equations reduce 

to equation (5.1) and the others, respectively, of [2]. 

Remark 5- Define the initial terms as follows: 

G(0, 0) = 0, G(l, 0) = iQ9 £(2, 0) = i(PQ + R) 
G(0, 1) = «, G(l, 1) = 0, G(2, 1) = Q2 

G(0, 2) = PQ + R9 £(1, 2) = iC2, G(2, 2) = Q{PQ + R) + ig(P§ + R) 
Then, following a technique similar to that used in Theorem 4.2, we prove that 

G(n9 m) = KnKm+1 + iKn + 1Km. (6.4) 
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Since (6.4) is exactly the same as (4.2) with Ji replaced by Ki, it can be 

readily seen that with such a replacement all identities proved in Sections 5 

and 6 can be transformed into ones with {Kn} and {Z*}. The same is true for 
{Ln} and {L*}. 
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