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1. INTRODUCTION

The sequence {Z,} of Fibonacci numbers is defined by
Fo=0,F =1,
with the recurrence relation
Fovo = Fpaq + Fy.
A number of identities for {F,} are well known. Among them are
Fy \Fyyp = By = (D" and Fy 1Fyer = Fy_oFye, = 2¢-DY.
These identities were generalized by Harman in [1] by introducing the complex
Fibonacci numbers. Similar generalized identities involving the combinations
of the Fibonacci, Lucas, Pell, and Chebyshev sequences were obtained by this
author (see [2]) by introducing the Generalized Gaussian Fibonacci Numbers de-
fined using Harman's technique.
This gave rise to a natural question: Is it possible to achieve similar
results for the Tribonacci numbers? This paper gives the answer in the affir-
mative. To achieve this, we define in Section 3 the complex Tribonacci numbers

at the Gaussian integers. Our main result is equation (5.1).

2. TRIBONACCI NUMBER SEQUENCES

Denote by {5,} a sequence defined by the third-order recurrence relation
given by
Sp+s = PSpyo + @Sy41 + RS,

We consider the following particular cases of {S,} and call them the fundamen-

tal sequences of third order.
a. {J,} where J, =0, J,
b. {k,} where ¥, =1, Xk, =0, and X, = @,
c. {L,} where L, = 0, L, = 0, and L, = R.

If P=¢ =R =1, then {J,}, {K,}, and {L,} will be called the special funda-

1, and J2 P,

mental sequences and will be denoted by {J%}, {k*}, and {L%*}, respectively.
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The following relations are easily proved:

Hopy =PI, + K , n>0; (2.1)
Koy =QJ, + BRI, _,,n 2 1; (2.2)
L,,; =RJ,, n=0. (2.3)

By (2.3), (2.2) can also be written as
Kpo1 =8J, +L,. (2.4)
It is helpful to know the first few terms of the above sequences. We pre-
sent them in Table 2.1. These sequences have been studied by many researchers

(see, e.g., Shannon [3], Shannon & Horadam [4], and Waddill & Sacks [5]).

Table 2.1

(5.} 0j1]2 3 4 5 6

{7.} {ol1|P|P*+qQ| P +2PQ+R |P"+3P%Q+ 2PR+ Q? P34+ 4P%Q+ 3P%R+ 3PQ% + 2R

{k,} |1|0]|@|Pe+R|P2Q+PrR+Q% | P°Q+P?R+2PQ*+ 2QR | P"Q+ PR+ 3P%Q* + 4PQR+ Q° + R?

{r,} |0{0{R| PR |P?R+QR PSR+ 2PQR+ R? PYR+ 3P%QR+ 2PR* + Q°R

3. DEFINITION

Let (n, m), n, m € Z, denote the set of Gaussian integers (n, m) = n -+ m.
Let G: (n, m) > €, where € is the set of complex numbers, be a function defined
as follows:

For fixed real numbers P, ¢, and £, define

G(0, 0) =0, G(1, 0) =1, G(2, 0) =P
G, 1) =<, G(1, 1) =P + 4P, G(2, 1) = P*> + 1(P* + @) (3.1)
G0, 2) = P, G(1, 2) = P? + @ + iP%, G(2, 2) = P® + PQ + 1 (P® + PQ)
with the following conditions:
Gn + 3, m) =PGn + 2, m) +Qn+ 1, m) + RG(n, m), (3.2)
and Gn, m+ 3) =PG(n, m+ 2) + QG(n, m + 1) + RG{n, m). (3.3)

The conditions (3.2) and (3.3) with the initial values (3.1) are sufficient to
obtain a unique value for every Gaussian integer with nonnegative values for n

and m.
L, RESULTS CONCERNING G{n, m)

Lemma 4.1: G(n, 0) and G(0, m) are given by
G(n, 0) = J,, and G(0, m) = idp: (4.1)

Proof: The proof is simple and hence omitted.
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Theorem 4.2: G(n, m) is given by

Gy m)y = J J . + i, d . (4.2)

Proof: Although an elegant proof can be given by using the technique of mathe-
matical induction, we give another below, which although not so elegant brings
out more clearly the interaction. We have:

Gn, m) =PGn - 1, m) +9Gn - 2, m) + RG(n - 3, m)

P{PGn - 2, m) + QG(n - 3, m) + RG(n - 4, m)}
+ QGn - 2, m) + RG(n - 3, m)

(P> + Q)G(n - 2, m) + (PQ + BYG(n - 3, m) + PRG(n - 4, m)
JG(m - 2, m) + K;Gno - 3, m) + L,G(m — 4, m)

J3[PG(n -3, m) +QG(n - 4, m) + RG(n - 5, m)]
+ KSG(n - 3, m + LSG(n -4, m)

] (PJy + K)G(n = 3, M+ (QJ,+L)G(n - 4, m) + RJsG(n -5, m
Now we make use of (2.1), (2.4), and (2.3) to set
Gn, m) =J,Gn -3, m) +KGn -4, m + L,Gn -5,m).

i

Continuing this process, we finally get

Gn, m) =dJ G2, m) + Kn_lG(l, m) + Ln_lG(O, m) . (4.3)

n=-1

We apply the same technique for G(2, m), G(1, m), and G(0, m) to get
G2, m) =d,_,G(2, 2) + K G2, 1) +L G2, 0),

m=-1
G(1, m) =d,_,6(1, 2) + K, G(1, 1) + L, ,G(1, 0),
and G0, m) =dJ,_,G(0, 2) + K _.G(0, 1) + L, ,G(0, 0).

Then (3.1) gives
G2, my ={P® +PQ + <(P* + PQ)}J,,_, + [P? + 2(P* + Q) 1Kp_, + PL,_1,
; _ 2 D2 .
G(l,m) = (P +Q +<P)J _, + (P+iP)K _, + L, ,, and (4.4)
6, m) = <Py, + 1K

m-1 m=1"°

1

Substituting the values of G(2, m), G(1, m), and G(0, m) from (4.4) into (4.3)
and simplifying, we get:

G, m) = {(P° + PQ)J + (P2 + Q)X

n-1

+ [P + PQ)d,
+ P?Kp,_q + PL,_11}n-1
+ {P2J, ) + PK,_y + 11 (P® + Q)Jp_y + PKy_y + Ly 113Ky
+{p7,_, + K, |IL
Using equations (2.1)-(2.4), we obtain:
G(ns m) = d, {P?J, + QJ, + i(P?Jn + PK,)}
+ K, ((PJ, + i[PJ, + K,]} + L,
J AP, + @, _, +PK | + L, .
+ ik, {PJ, | +K

= Ty + id, ]

n+1l%m

n-1

m-1

W
+ [P, _, + PK, .1}

m=1

n
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Theorem 4.3: Epr fixed ns m (n, m = 0, 1, ...), the recurrence relation for

G(n, m) is given by the following:

Gn +ky,m+ k) = (P +4P) EIQ‘ JJM ok (4.5)
J=
(k/2] +
k-2j+s
+F’{i Zl Q Jn+ZJ-SJm+27—2—S
iz

(&/21 - 27+ 1~
+ E Q Jﬂ+2d—3+st+ZJ-—1+s}

(k/21+s
+ iR Q<T@ tsy J

n+2j-2-s9%m+25~s

RI21
" Jz_:lQ J”’*Z"‘HDJW+2M3+5}
ok G, m), 4if k is even

G(my, n), 1if k is odd,

0, if %k is even

1. if k is odd and {%/2] denotes the greatest integer function.

where g = {

Proof: Fix »n and m. From (4.2), we have:

G+ 1, m+ 1) =d, 1Jpeo + 19,0000,
= [Py +QJ, + BRI ) + T[PT, QT +RI, _ 1,
By algebraic manipulation and interchanging » and m in (4.2), we get
Gn+ 1, m+ 1) = (P + 1P)J e 1Imaer T BT T
+ TRJ, (T QG(m, ). (4.6)

Similarly, we have

Gn+ 2, m-+ 2)

Il
—
!
+

7;P)[Jn+2’]ﬁ1+2 +QJ +1 m+l]
+ R[J,, ody + @, 101 ]

nt+2

+ 4R[J T, + @ 1+ Q%(n, m). 4.7)

(4.6) and (4.7) show that (4.5) holds for k = 1 and Xk = 2. Now, suppose (4.5)

+1m1

holds for the first k positive integers. We prove that then it also holds for
the integer k + 2. Now, although n and m are assumed to be fixed in (4.7), it
is clear that (4.7), in fact, is true for any positive integers n and m. Thus,
replacing n and m by n + k and m + k, respectively, in (4.7), we get:
Gn+k+ 2, m+k+2)= @+ P ipsmrrez * O rrw 9nrrst]
+‘RL7+k+f%+k + @&+k—ﬁh+x+l]
+ 7;R[Jn-kk m+k+2 T &, +k+1dﬁ+k—1]
+ Q%CGn + k, m + k)
Substituting for G(n + k, m + k) from (4.5), we get:
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Gon+k+2,m+k+2) = @+ iP)hupiohnrkrr T Fvrr1dnsie ] (4.8)

+ R[Jn+k+2'j+k T sz 1 +k+1]

+ Rl T @y 1men- 1]

k .
. k-
+ Qz{(P + 1P) ZlQ T it s
i=
& k~2j+s
+ R li: Q Jn+23-st+ZJ—2—s
(k/2] k-2j+1~-8
+ Z J;4+ZJ—3+aJm+2J—1+o:I

k-2j+1~s
‘/:H-Zj— 1+st+2j—3+s:|

+_QR{G(H, my, k even}

=1
21+ k-27+a
+ g Q Jn+2j-2—st+2j—s
/2]
Z

G@m, n), k odd

We observe the following on the right-hand side of (4.8):

The coefficient of P + ZP is

k
k+2 J
ottt 2dmrk+2 T @hirr1dn +k+1+_z% ot jm+ g
i=
_kiz K+ 2- JJ
T n+g m+7
J=1
The coefficient of R is
[k/2]+s R
k+2-27+s
Jn+k+2Jm+k + QJn+k—1Jrn+k+1 + i~ 4 Jﬂ+2j—st+2j—2—s
[k/2] .
k+3-27-~s
+ jz=:l Q Jn+2j—3+st+2j—1+s'

Observing that, if j = [k/21 + 1 +s8 and J = [k/2] + 1, 2 =k + 2 + s and
k + 2 - s, respectively, where s is as defined before, we see that:

The coefficient of R is

[k/2]+1+sk e 2i4
+ -
. & T it 25w 5wt 2 -2 6
Ji=1
[k/2]+ 1 ,
k+3-27-
+ Y Ty . J,

4 n+27-3+8¥m+2j-1+¢"
Similarly:

The coefficient of ZR is
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[k/2]+1+s 225+ [k/2]+1 X
- s . 3 +3-2j-s
jg:l ‘Q Jn+ZJ—2—st+2J—s + ng 4 Jrz+2j—1+st+2J._3+s,
The last term is

G(n, m), Kk even,
Qk+2

G@m, n), k odd.
These coefficients are exactly the same as those, respectively, on the right-

hand side of (4.5) with k replaced by k + 2. This completes the proof.

5. IDENTITIES FOR {Jn}

Equating the real parts of (4.5), and making use of (4.2), we get:
k/2]1+s

k=-27+
g 4 ’ an+2j—st+2j—2—s (5.1)

k . [
k-

PY QR T s+ R[

Jj=1 Jg=1

1ki2) k-2j+1-s8
+ EIQ Jn+2j-3+st+2j—1+s:]
j=

_ k
- Jn+kJm+k+1 =& s

Remark 1: Equation (5.1) gives the sum of 2k terms as that of just two terms.
Note that equating the imaginary parts of (4.5) gives (5.1) with m and n inter-

changed and, therefore, effectively the same equation.

We now consider some special cases.

6. SPECIAL CASES

Putting s = 0 and s = 1, in turn, for k even and k odd, respectively, we
readily observe that, for both even and odd k, (5.1) reduces to a single equa-
tion given by

k k .
k-jr2 k- k
p.zle Tpp s t R}_‘,IQ Tvioodnri = Tnerdnrrar = @y (6.1)
J= J=

(B) m=n=20

With these values of m and n, (6.1) reduces to

KoL koL
PY QUL+ RY QU 5Ty = S (6.2)
i1 e

Equation (5.1) takes the following form:
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Ko LT
P.Zl Jid;, TR jle Srj-2425 (905120 T Jaj41-25] (6.3)
7= =
{J§+1 - gk if k is even,
B 2 . .
Jpe1 = B qd _, if k is odd.

Remark 2: Various other identities may be obtained for other choices of m and

n. Thus, equation (5.1) provides an abundance of identities.

Remark 3: If P =@ =R = 1, the identities in Sections 5 and 6 reduce to those

for the "special fundamental sequences.'" It is interesting to compare these
identities with similar ones for Fibonacci sequences. For example, for n = 0,
m =0, (6.2) becomes

k kK
2J§2 +j§lJ;—zJ; = S

J=4+

and for n = 1, m = 0, (6.3) reduces to

K (k/2]
* Tk * * *
J'Z:leJj*'l + jgl JZj—2+25 [J2,7'—1-23 +J2j+1-23]
{J:il -1, if k is even,
S, = Jy1dn_,s if kK is odd.

Similar identities for the Fibonacci sequence are

k
2 _
J.gle Fka+1’
2 . ,
k F -1, if k is even,
k+1
and jzleij"’l = { ) ) )
E%+1’ if k& is odd.
(See [11.)

Remark 4: If R = 0, the sequence {J,} reduces to the sequence with second-order
recurrence relation. If, in addition, P = p and § = -g, {J,} becomes Lucas's
fundamental sequence [2]. If P =1 and @ =1, {Jﬁ} reduces to the Fibonacci
sequence. In these cases, equation (5.1) and the rest of the equations reduce

to equation (5.1) and the others, respectively, of [2].

Remark 5: Define the initial terms as follows:

G0, 0) =0, G(1, 0) =120, G(2, 0) = 2(PQ + R)
G0, 1) =g, G(1, 1) =0, G2, 1) = @*
G(0, 2) = PQ + R, G(1, 2) = iQ*, G(2, 2) = Q(PQ + R) + iQ(Pq + R)

Then, following a technique similar to that used in Theorem 4.2, we prove that

G(?flg m) = KnKm+l + iKn+1Km- (6-4)
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Since (6.4) is exactly the same as (4.2) with J; replaced by X;, it can be

readily seen that with such a replacement all identities proved in Sections 5

and 6 can be transformed into ones with {X,} and {X}}. The same is true for

{r,} and {LZ}}.
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