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1. INTRODUCTION 

According to Dickson [3, pp. 6 and 17], Fermat conjectured and Gauss proved 

the following theorem. 

Theorem 1: Every nonnegative integer can be expressed as a sum of three tri-

angular numbers [including 0 = 0(0 + l)/2]. 

Gauss also gave a method for counting the number of such representations 

of a given nonnegative integer. In this paper we propose to express the impli-

cit counting function in terms of simple divisor functions. All of these func-

tions are collected in the following definition. 

Definition: 

(i) For each nonnegative integer n, t3(n) denotes the cardinality of the 

s e t / 3 N 
Uxl9 x2, x 3 ) e]N3\?i = £ xi(xi + 1)/2J>. 

(Here, JN = {0, 1, 2, . . . } . ) 

(ii) For each positive integer n and £ € {l, 5}, 

^(n):= E 1; 
6= i (mod 6) 

and, e(n) : = d1(n) - d5(n). 

Theorem 2: Let n denote an arbitrary nonnegative integer. 

(i) If n = 3£(£ + l)/2, for some £ e J7, then 

tq(n) = 1 + 3 y > ( n - 3£(£ + l)/2). 
d i-o 

(ii) If n is not of the form 3£(£ + l)/2, then 

M n ) = 3 E £ ( n " 3£(£ + l)/2). 
£ = 0 

In both cases, summation extends over all £ € IN for which n ~ 3i(i + l)/2 > 0. 
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Section 2 is dedicated to proof of Theorem 2. In view of the two theorems 

we then deduce a corollary concerning the behavior of the function £. 

2. PROOF OF THEOREM 2 

The leading role in our argument is played by the following variant of the 

quintuple-product identity. 

fid- * * * ) ( ! - a2Xln-2)(l - a-2X2n) _ ^a.n(3n+2)(a-3n. „ a 3 n + 2 ) - ( 1 ) 

1 (1 + ax271-1)^ + a^x2"-1) 

(Here and throughout our discussion we assume that a and x denote complex num-
bers with a ^ 0 and \x\ < 1.) For a discussion of (1) and other forms of the 
quintuple-product identity see [5]. We shall also require the classical triple-

product identity: 

O d - x2n)(l + ax271'1)^ + a~xx2n-x) = JTxn2an. (2) 
1 -00 

In [2] Carlitz and Subbarao show how to deduce one form of the quintuple-prod-

uct identity from (2). 

Multiplying (1) by a"1, we have 

(a - a'1) ft CI - « t o ) d - «2a:2")Cl - (3) 
i (1 + ax2n-l)(l + a"1*2""1) 

= a f > 3 n 2 + 2 n a 3 n - a"1 f ) xSnZ + 2n
a-3n 

_oo - c o 

= a fl (1 - x6n)(l + a V ^ X l + a-3x&n-5) 
l 

- a'1 fid - xSn)(l + a'W-^d + a 3 * 6 n " 5 ) . 
l 

In the last step we have used (2) to transform the infinite series into infinite 

products. For the sake of brevity, put 

r,, N N A (! - a2^2n)(l - a"2^2n) 
F(a) = F(a, x) : = II — ~ — (1 + oaj^^Xl + a-xx^-x) 

G{a) = £(a, x) : = ft (1 + aV n _ 1 )(l + a"3x6n"5)5 
l 

#(a) : = £(a~]-). 

Hence, (3) becomes 

0(1 - x2n)(a - a-x)F(a) = II d - *6*){a£(a) - a"1i7(a)}, 
l i 
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Differentiating the foregoing identity with respect to a, we get 

ft (1 - x2n){(l + a~2)F(a) + (a - a~1)F'(a)} (4) 
l 

= II (1 - x6n){G(a) + a'2H(a) + aGr(a) - a'1H,(a)}. 
l 

Now, using the technique of logarithmic differentiation, we evaluate GT(a) and 

Hr(a)9 then substitute these evaluations into (4), let a -> 1, and cancel a fac-

tor of 2 in the resulting identity to get 

^ (1 - x2n)3 

1 (I +a:2B-1)2 ' 

CO ( " / - v . 6 " " 1 rf^n "5 

= n (i - *6 n)d + x6n_1)(i + x&n-5)h + 3 £ 
i ( i \1 + X6""1 1 + a6"-5, 

In the foregoing identity we then let x •+ -x, utilize the definition of e, and 

simplify to get 

n — ^ ^ - L = 1 + 3£e(«)cc*. (5) 
1 (1 - a;2"" 1) 3- (1 - x&n) i 

At this juncture, we appeal to the following well-known identity of Gauss [4, 

p. 284]. 

1 1 - x2n~x o 

Hence, (5) becomes 

/ oo \ Q t» , ( oo s 

or, equivalently (owing to the fact that the left side of this identity gener-

ates t 3 ) , 

f>3(n);cn = f)i3 i ( i t I )' 2 + 3 ^ » E e(n - 3i(i + l)/2). 
0 i =0 n = l i = 0 

Equating coefficients of like powers of x, we thus prove our theorem. 

Corollary: If n is any positive integer which is not of the form 3i(i + l)/2, 

then there exists j e {0, 1,...,[(-1 + V(8/3)n + l)/2]} such that 

e(n - 3j(j + l)/2) > 0. 

Proof: Let such an n be given. By multiplicative induction it follows easily 

that z(jri) ^ 0 for each positive integer• m. Hence, the sum on the right side of 
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the equation of Theorem 2(ii) is nonnegative. Now, by Theorem 1, t (ji) > 0. 

Hence, the aforementioned sum is positive, whence there exists 

j e {0, 1, ..., [(-1 + A8/3)n + l)/2]} 

such that 

e(n - 3J(J + l)/2) > 0. 

CONCLUDING REMARKS 

In a recent paper, Andrews [1] has presented a proof of Theorem 1 which 

(unlike Gauss's proof) is independent of the theory of ternary quadratic forms. 

Of course, such proofs of Theorem 1 and Theorem 2 then combine to yield a proof 

of the Corollary that is independent of the theory of ternary quadratic forms. 

However, if one could find another such direct proof of the Corollary, then one 

could use the statement of the Corollary (then independent of Theorems 1 and 2) 

and Theorem 2 to produce yet another proof of Theorem 1. 
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