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A k'h-order linear recurrent sequence u = {u,:n =1, 2, ...} of integers

satisfying the following equation for greatest common divisors,
(wys u;) = |ug 5] forall 4, j>1, (1)

is called a k'P-order strong divisibility sequence. A complete characteriza-—
tion of all the second-order strong divisibility sequences was given in [1] for
integers and then in [3] for an arbitrary algebraic number field. In this note

we shall study the third-order strong divisibility sequences.

The system of all the sequences of integers U = {u,:n =1, 2,...} defined

by
u, =1, U, = V, Uy = U, (2)
Uppsg = A* Upip + DUy, FCou, forn 21 (3)

(where v, U, a, b, ¢ are integers) will be denoted by U. The system of all the
strong divisibility sequences from U [i.e., sequences from U satisfying (1)]
will be denoted by D.

The aim of this paper is to find all the strong divisibility sequences in
certain subsystems of U and, further, to give some necessary conditions for a
sequence from U to be a strong divisibility sequence. Notice that we may take
u, =1 without loss of generality because all the third-order strong divisibil-

ity sequences are obviously all the integral multiples of sequences from D.

1. THE CASES u, = 0 AND u; =0

Let U, denote the system of all the sequences from U satisfying u, = 0 and

let U, denote all the sequences from U satisfying U, = 0. Further, let

4 ={a, a,, a,, au} and B=1{b. ,b ,b,,b,b,b},

where

a, ={1,0,1,0,1,...} a, = {1,0,1,0,-1,0, 1,0, =1, ...}
, = {1,0,-1,0, -1, ...} a, = {1,0,-1,0,1,0,-1,0, 1, ...}

o))
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={1,1,0,1, 1,0, ...}

, ={1,1,0,-1,-1,0,1,1,0,-1,-1,0, ...}
={1,1,0,-1,1,0,-1,1,0, ...}
={1,-1,0,~1,1,0, 1,-1,0, ...}
{1,-1,0,1,-1,0, ...}

¢ ={1,-1,0,1,1,0,-1,-1,0,1, 1,0, ...}

w

v

O T §T o T U

Directly from the definitions, we get: A C D NU,;3 BC D NU,. The following
propositions show that both the inclusions are, in fact, equalities, i.e., the
sequences from A (from B) are precisely all the strong divisibility sequences

from U1 (from U2).
Proposition 1.1: Let u = {“n} € U;- Then u € D if and only if u € 4.

Proof: Let u € D; then, from (u,, u,,) = 0 and (“2’ u =1, we get u,;, =0

k+1)

and u,,,, = *1 for every k2 1. Now, from u; = *1, u, =0, u; = 1, we obtain

four cases:

(i) u, =u, =1=>u=a;
(ii) uy =1, ug =-1=u=a,;
(iii) ug =-1, ug = 1=>u-=a,;
(iv) uy =ug =-1=u=a,;

hence, we get u € A. The converse is obvious.
Proposition 1.2: Tet u = {u,} € U,. Then u € D if and only if u € B.

Proof: Let u € D; then, from

|u3| for 3|H 0 for B\N
= (uzs uy,) = » we get u, =

lun‘ - *
|, | for 3)n t1  for 3fn
Thus, u, = +1, u, = +1, U, = +1, Uy = 0, and we obtain eight cases:
(1) u, =u, =ug =1=u=Dby;
(i) u, =u, =1, uy, =-l=u, =2, a contradiction;
(iii) w, =1, u, =-1, u; =1=u=by
(iv) u, =1, u, =ug = -1 =u = Dby;
(v) u, =-l, u, =ug =1l=u-= b,;
(vi) u, = -1, uy =1, usg = -1 =u =Dbg;
(vii) U, =u, = -1, U, = 1l =u-= bq;
(viii) u, =u, =u; = -1 =>u, = -2, a contradiction;

hence, we get u € B. Again, the converse is obvious.
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2. THE CASE u, # 0, u, #0

Let U, denote the system of all the sequences from U satisfying u, # 0 and
uy # 0. Obviously: U=U,u U, U U, and U, NU; =U, N Uy = @. Moreover, it

is obvious that, for all the sequences from U, it holds that

Uy u,) = Iu(lﬂﬂl for all n = 1.
Proposition 2.1: Let u = {x,} € U;. Then (u;, u;) = |z, 5y for 1 <2, 5 <4
if and only if the following conditions hold:
(\)s ]J) = 1; (4)
c=7f>v - a-y, where f is a fixed integer; (5)
(W b+ ) = 1. (6)

Proof: Obviously (u,, u,)=|u <> (v, W) =1 and (u,, u,) = |u,|<> there exists

an integer f such that fvV = qu + ¢. Finally, let (4) and (5) hold; then,

(gs u) = Ju <=0, v+ V) =10, b+ ) = 1.

Proposition 2.2: Let u = {u,} € U,. Then (u;, u;) = ‘u(i’j)! for 1 <72, g <5
if and only if (4), (5), (6), and the following conditions hold:
(\)’ b) = ]-; (7)
(U, vf+a- b+ 1) =1; (8)
B+ f5 ve (VFf ~ ua) + ub) = 1. (9)
Proof: Let (4) and (5) hold; then,
u, =ve G+, u;, =avd + ) +bu+ (v - apv.
Thus, uy = by (mod |v|) and we get (u,, ug) = |u,|<>(v, b) = 1. Furthermore,
us = V- (ab + af + V) (mod |u|) and, therefore,
(Ugs Ug) = |uy| &=, ab + af + fv) = 1.
Finally, let (4), (5), and (7) hold; then,
(wys ug) = [u| &= (VB + H, VOO - ap) + ) =1
=B+, vivf - au) + ub) =1,
which completes the proof.
Proposition 2.3: Let u = {u,} € U,. Then (u;, u;) = [“(i @I for 1< ¢, j<6
if and only if (4)-(9) and the following conditions hold:
via® - w; (10)
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u|(vaf + (@ + )b + s (1)
b —

<b + f, vaf + u(f - a? + EL*KT_E2>> = 1; (12)

(la® + F ~ 1) + V) + b, v(B + N +b) +

+ a(fv - aw) + fu) + pa® - W) = 1. (13)

Proof: Let (5) hold, then u, =v+ (b + f; u, =ve- (@b + f - u) + fv) + ubs;

ug = V(b + NH@® +b) +a(fv - ap) + fu) + pa(b - W; and obviously (ug, uy) =
|u,|<=>(13). Further, let (4) and (5) hold; then,

(U, ug) = |u2§é:>(10) and (uys Ug) = $u3|¢:>(11).
Finally, let (5) and (10) hold; then
(> ug) = |u,|<==012),
which completes the proof.
Lemma 2.4: TLet u = {u,} € U,, u satisfying (5) and (10). Then
Uy, =0 (mod [v])s wm,,, = PR e (mod |V]) for all k > 1. (14)
Proof: TFrom (5) and (10), we get: ¢ = —-ab (mod ]v[) and, hence,
Uppg = A Uyqy + Doy, — ab-u, (mod v .
Now, using mathematical induction with respect to k, we get (14).
Theorem 2.5: Let u = {u,} € U,, u satisfying (4), (5), (7), and (10). Then
(u,, uj) = I”(z,jﬂ for all 4 = 1.
Proof: Let j 2 1 be even; then, from Lemma 2.4, we get
(uyy uy) = vl = I“(z,jﬂ-

Now, let j 2 1 be odd; then, from (4) and (7), it follows that (v, pk-1. w =1

for all ¥ 2 1 and, hence, from Lemma 2.4, we get
(u,, uj) =1 = |u(2)jﬂ.

3. A SPECIAL CASE OF u, # 0, u, # 0

Let U, denote the system of all the sequence from U, satisfying the con-

ditions,

N

(uys uz) = lug, ;5 for 1 <4, j <, (15)
b+ f=0, (16)

where f is the integer from (5). Further, let
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c=1{1,2,1,0,1,2,1,0, ...}, d={1,-2,1,0,1,-2,1,0, ...}.

The following theorem will give a complete characterization of all the strong
divisibility sequences invﬁs, showing that ¢ and d are the only strong divisi-

bility sequences in Uy, i.e., 773 NnpD=4{c, d}.

Theorem 3.1: Let u = {u,} € U,. Then u € D if and only if u =c or u = d.

Proof: Obviously, ¢, d € U3 N D. Conversely, let u € U; be a strong divisi-
bility sequence. Let us denote x = Ve (Vf - ya) + ub, y = vzaf + vu(f - a?) +
pa(d - p). Then, from (16), (6), (9), and (12), we get Y = *1, x = x1, y = *v,

so that we have eight possibilities:

(i) p=1,2z=1,y =V

From 4 = 1 and © = 1, we get - 1 = va - V2f. Then, fromy = v, we get Vf = Vv
so that f = 1 and, consequently, b = -1, av = v -2, and e =V - a, using (5).
Then u = {1,v, 1,0, 1,v, v2-3, ...}. But from Uy u,) = Iull, we get v = *2
and, hence, U =c or u = d.

(it) w=1,z=1,y = -v
Similarly, as in (i), we get f = -1, b =1, a = -v, and ¢ = 0. Then we obtain
u={1,v, 1,0, 1,-v, v?+1, ...}, a co‘ntradiction, since (uy, u,) = v2 o4+ 1 #
e |-

(iii) n=1,x=-1, y =v
Using p =1, f=-b inx = -1, we get va = -v?b + b + 1 and then, from yv = v2,
we get b (V2 - 2) = v® + 2. Let |v| > 2, then v? = =2 (mod (v? - 2)). Trivi-

ally, v> = 2 (mod (v® - 2)), so that (v® - 2)|4 and, consequently, v = *2. But

vV = +2 implies b = 3, a = ¥4, and ¢ = ¥2, a contradiction, since (U, u,) =11
# Iul'. The remaining cases v = *1 lead to b = -3, a = £1, and ¢ = 2, a con-
tradiction, since (u,, u,) =4 # [ull

(iv) u=1,x =-1, y = -v
Similarly, as in (iii), we get va = =v?b + b + 1 and b+ (V2 - 2) = -v% + 2 so
that b = -1, a =V, and ¢ = 0. Thenu = {1,v, 1,0, -1,-v, -=v®+1,...}, a con-

tradiction, since (u,, u,) # [ull.

(v) p=-l,xz=1,y =v
Similarly, as in (i), we get f=-1, b =1, ¢ =a - v, and av = v2 + 2, which
gives u = {1,v, -1,0, 1, v, v>+ 3, ...}, a contradiction, since (u,, u.,) = v2 4+
34 |uy

(vi) u=-l,xz=1,y = -v
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In the same way as in (i), we get f =1, b =-1, g = ~v, and ¢

]

0 so that u =

{1,v,-1,0,1,-v,v2-1, ...}, a contradiction, since (w, > u,) V21 4 ‘ul

(vii) p=-1,2=-1,y =v

Similarly, as in (iii), we get b+ (v + 2) = =v2 + 2 and, hence, v2 = 2 (mod
v+ 2)). Trivially, v2 = =2 (mod (v? + 2)), so that we get (v? + 2)[4 and,
consequently, v? = -1,0, 2, a contradiction.

(viii) p=-1,2=~1,y =-v
Similarly, as in (iii), we get va = v + b-1 and b(vV?® + 2) = v?2 + 2, so that
b=1,a=v, ¢ =0. Hence, u= {1,v,-1,0, -1, -y, —v2—-1, ...}, a contradic-

tion, since (u,, u,) = v2i4+1 4 ]ull.

Remark: We did not use conditions (8), (11), and (13) in the proof of Theorem

3.1, so that we can, in fact, weaken the assumptions (15) by omitting

> and  (ug, u ) = ]ull.

(MS’ MS) = 1“115 (M3, u6) = ‘u3
REFERENCES

1. P. Horak & L. Skula. "A Characterization of the Second-Order Strong Divi-
sibility Sequences." The Fibonacei Quarterly 23, no. 2 (1985):126-132.

2. C. Kimberling. "Strong Divisibility Sequences and Some Conjectures." The
Fibonacci Quarterly 17 , no. 1 (1979):13-17.
3. A. Schinzel. "Second-Order Strong Divisibility Sequences in an Algebraic

Number Field." Awrchivum Mathematicum (Brno) 23 (1987):181-186.

0609

1988] 371



