ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by A. P. Hillman

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to $Dr.\ A.\ P.\ HILLMAN;\ 709\ SOLANO\ DR.,\ S.E.;\ ALBUQUERQUE,\ NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.$

DEFINITIONS

The Fibonacci numbers \mathcal{F}_n and the Lucas numbers \mathcal{L}_n satisfy

and

$$F_{n+2} = F_{n+1} + F_n$$
, $F_0 = 0$, $F_1 = 1$
 $L_{n+2} = L_{n+1} + L_n$, $L_0 = 2$, $L_1 = 1$.

PROBLEMS PROPOSED IN THIS ISSUE

B-634 Proposed by P. L. Mana, Albuquerque, NM

For how many integers n with $1 \le n \le 10^6$ is $2^n \equiv n \pmod{5}$?

B-635 Proposed by Mohammad K. Azarian, U. of Evansville, Evansville, IN

For all positive integers n, prove that

$$2^{n+1} \left[1 + \sum_{k=1}^{n} (k!k) \right] < (n+2)^{n+1}.$$

B-636 Proposed by Mohammad K. Azarian, U. of Evansville, Evansville, IN

Solve the difference equation

$$x_{n+1} \, = \, (n\, +\, 1)x_n \, +\, \lambda (n\, +\, 1)^{\,3}[n!\, (n!\, -\, 1)\,]$$

for x_n in terms of λ , x_0 , and n.

B-637 Proposed by John Turner, U. of Waikato, Hamilton, New Zealand

Show that

$$\sum_{n=1}^{\infty} \ \frac{1}{F_n + \alpha F_{n+1}} = 1,$$

where α is the golden mean $(1 + \sqrt{5})/2$.

B-638 Proposed by Herta T. Freitag, Roanoke, VA

Find s and t as function of k and n such that

$$\sum_{i=1}^{k} F_{n-4k+4i-2} = F_s F_t.$$

B-639 Proposed by Herta T. Freitag, Roanoke, VA

Find s and t as function of k and n such that

$$\sum_{i=1}^{k} L_{n-4k+4i-2} = F_s L_t.$$

SOLUTIONS

No Fibonacci Pythagorean Triples

B-610 Proposed by L. Kuipers, Serre, Switzerland

Prove that there are no positive integers r, s, and t such that $(F_r$, F_s , F_t) is a Pythagorean triple (that is, such that $F_r^2 + F_s^2 = F_t^2$).

Solution by Marjorie Bicknell-Johnson, Santa Clara, CA

V. E. Hoggatt, Jr., proved that no three distinct Fibonacci numbers can be the lengths of the three sides of a triangle. (See page 85 of Fibonacci and Lucas Numbers, Houghton Mifflin Mathematics Enrichment Series, Houghton Mifflin, Boston, 1969.) Since a Pythagorean triple gives integral lengths for the sides of a right triangle, his result is more general. Hoggatt's elegant proof follows, where α , b, and c are the sides of the triangle:

In any triangle, we must have $\alpha+b>c$, $b+c>\alpha$, and $c+\alpha>b$. For any three consecutive Fibonacci numbers, $F_n+F_{n+1}=F_{n+2}$, and so there can be no triangle with sides having measures F_n , F_{n+1} , F_{n+2} . In general, consider Fibonacci numbers, F_r , F_s , F_t , where $F_r \leq F_{s-1}$ and $F_{s+1} \leq F_t$. Since $F_{s-1}+F_s=F_{s+1}$ and $F_r \leq F_{s-1}$, we have $F_r+F_s \leq F_{s+1}$, and since $F_{s+1} \leq F_t$, we have $F_r+F_s \leq F_t$. Therefore, there can be no triangle with sides having measure F_r , F_s , and F_t .

Also solved by Charles Ashbacher, Paul S. Bruckman, Piero Filipponi, C. Georghiou, Sahib Singh, Lawrence Somer, and the proposer.

Each Term a Multiple of 3

B-611 Proposed by Herta T. Freitag, Roanoke, VA

Let

$$S(n) = \sum_{k=1}^{n} L_{4k+2}.$$

For which positive integers n is S(n) an integral multiple of 3?

Solution by Bob Prielipp, U. of Wisconsin-Oshkosh

We shall show that $\mathcal{S}(n)$ is an integral multkple of 3 for each positive integer n.

ELEMENTARY PROBLEMS AND SOLUTIONS

The claimed result is an immediate consequence of the following lemma.

Lemma: 3 divides L_{4k+2} for each nonnegative integer k.

Proof: Because L_2 = 3, the specified result holds when k = 0. Let j be a non-negative integer. Then

$$\begin{array}{l} L_{4(j+1)+2} = L_{4j+6} = L_{4j+4} + L_{4j+5} \\ &= (L_{4j+2} + L_{4j+3}) + (L_{4j+2} + 2L_{4j+3}) = 2L_{4j+2} + 3L_{4j+3}. \end{array}$$

Hence, if 3 divides L_{4j+2} , then 3 divides $L_{4(j+1)+2}$. The required result now follows by mathematical induction.

Also solved by Paul S. Bruckman, Piero Filipponi, C. Georghiou, L. Kuipers, Chris Long, Br. J. M. Mahon, H.-J. Seiffert, Sahib Singh, Lawrence Somer, H. J. M. Wijers, Gregory Wulczyn, and the proposer.

When the Sum Is a Multiple of 7

B-612 Proposed by Herta T. Freitag, Roanoke, VA

Let

$$T(n) = \sum_{k=1}^{n} F_{4k+2}.$$

For which positive integers n is T(n) an integral multiple of 7?

Solution by Lawrence Somer, Washington, D.C.

By inspection, we observe that the period of $\{F_n\}$ modulo 7 is 16. Now,

$$F_2 = 1 \equiv 1 \pmod{7}$$
, $F_6 = 8 \equiv 1 \pmod{7}$, $F_{10} = 55 \equiv -1 \pmod{7}$, $F_{14} = 377 \equiv -1 \pmod{7}$.

It thus follows that

$$F_{4k+2} \equiv 1 \pmod{7}$$
 if $k \equiv 0$ or $1 \pmod{4}$

and

$$F_{4k+2} \equiv -1 \pmod{7}$$
 if $k \equiv 2 \text{ or } 3 \pmod{4}$.

Consequently, it follows that T(n) is an integral multiple of 7 for a positive integer n if and only if n is an even integer.

Also solved by Paul S. Bruckman, Piero Filipponi, C. Georghiou, Br. J. M. Mahon, Bob Prielipp, H.-J. Seiffert, Sahib Singh, H. J. M. Wijers, Gregory Wulczyn, and the proposer.

Finding the Constants

B-613 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy

Show that there exist integers a, b, and c such that

$$F_{n+p}^2 + F_{n-p}^2 = \alpha F_n^2 F_p^2 + b(-1)^p F_n^2 + c(-1)^n F_p^2$$
.

Solution by C. Georghiou, University of Patras, Greece

We will show that $\alpha = 5$ and b = c = 2. Indeed, from the identity

$$5F_n^2 = L_{2n} - 2(-1)^n,$$

we find

and $5F_{n+p}^2 + 5F_{n-p}^2 = L_{2n+2p} + L_{2n-2p} - 4(-1)^{n+p} = L_{2n}L_{2p} - 4(-1)^{n+p}$ $25F_n^2F_p^2 = L_{2n}L_{2n} - 2(-1)^pL_{2n} - 2(-1)^nL_{2p} + 4(-1)^{n+p}.$

It follows, therefore, that

$$\begin{split} F_{n+p}^2 + F_{n-p}^2 - 5F_n^2 F_p^2 &= (2(-1)^p L_{2n} + 2(-1)^n L_{2p} - 8(-1)^{n+p})/5 \\ &= 2(-1)^p F_n^2 + 2(-1)^n F_p^2. \end{split}$$

Also solved by Paul S. Bruckman, Herta T. Freitag, L. Kuipers, Br. J. M. Mahon, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, Gregory Wulczyn, and the proposer.

Quadruple Products Mod 8

B-614 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy

Let
$$L(n) = L_{n-2}L_{n-1}L_{n+1}L_{n+2}$$
 and $F(n) = F_{n-2}F_{n-1}F_{n+1}F_{n+2}$. Show that $L(n) \equiv F(n) \pmod{8}$

and express [L(n) - F(n)]/8 as a polynomial in F_n .

Solution by Sahib Singh, Clarion U. of Pennsylvania, Clarion, PA

Using I_{20} and I_{29} in Hoggatt's Fibonacci and Lucas Numbers, we get:

$$L(n) = L_n^4 - 25$$
 and $F(n) = F_n^4 - 1$.

Replacing L_n^2 by $5F_n^2 + 4(-1)^n$, we get

$$L(n) - F(n) = 24F_n^4 + 40(-1)^n F_n^2 - 8 \equiv 0 \pmod{8}$$
.

Hence,

$$\frac{L(n) - F(n)}{8} = 3F_n^4 + 5(-1)^n F_n^2 - 1.$$

Also solved by Paul S. Bruckman, Herta T. Freitag, C. Georghiou, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Gregory Wulczyn, David Zeitlin, and the proposer.

Identity for Iterated Lucas Numbers

B-615 Proposed by Michael Eisenstein, San Antonio, TX

Let
$$C(n)=L_n$$
 and $\alpha_n=C(C(n))$. For $n=0$, 1, ..., prove that
$$\alpha_{n+3}=\alpha_{n+2}\alpha_{n+1}\pm\alpha_n.$$

Solution by C. Georghiou, University of Patras, Greece

It is easy to see that
$$a_n = \alpha^{L(n)} + \beta^{L(n)}$$
. Therefore,
$$a_{n+2}a_{n+1} = (\alpha^{L(n+2)} + \beta^{L(n+2)})(\alpha^{L(n+1)} + \beta^{L(n+1)})$$
$$= \alpha^{L(n+3)} + \beta^{L(n+3)} + (-1)^{L(n+1)}(\alpha^{L(n)} + \beta^{L(n)})$$

from which the assertion follows.

ELEMENTARY PROBLEMS AND SOLUTIONS

Also solved by Paul S. Bruckman, Piero Filipponi, Herta T. Freitag, L. Kuipers, Br. J. M. Mahon, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, David Zeitlin, and the proposer.
