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1. Definition 

A finite set of positive integers is said to have property A if every mem-
ber of the set is a divisor of the greatest member of the set. 

Example: The set of exponents to which numbers prime to m belong modulo m has 
property A. [The greatest exponent in the set is X(rn), and every member of the 
set is a divisor of X (jn). See the propositions listed for reference in Section 
3 below.] Let N be any positive integer greater than 3. Let S be the set of 
exponents to which the numbers prime to N - 1 belong modulo (N - 1) . Let T be 
the set of exponents to which the numbers prime to N + 1 belong modulo (N + 1). 
S and T have property A. Let Sr and T' be the sets of exponents to which the 
divisors of N belong modulo (N - 1) and (N + 1), respectively. Sr is a subset 
of S, and I" is a subset of T. For example, if N = 21, the numbers less than 
20 and prime to it are 1, 3, 7, 9, 11, 13, 17, and 19. The exponents they 
belong to modulo (20) are, respectively, 1, 4, 4, 2, 2, 4, 4, and 2. Then S = 
{1, 2, 4}. The divisors of 21 are 1, 3, 7, and 21. The exponents they belong 
to modulo (20) are, respectively, 1, 4, 4, and 1. Then Sf = {1, 4}. The 
numbers less than 22 and prime to it are 1, 3, 5, 7, 9, 13, 15, 17, 19, and 21. 
The exponents they belong to modulo (22) are, respectively, 1, 5, 5, 10, 5, 10, 
5, 10, 10, and 2. Then T = {1, 2, 5, 10}. The exponents that the divisors of 
21 (1, 3, 7, 21) belong to modulo (22) are, respectively, 1, 5, 10, and 2. 
Then T' = {1, 2, 5, 10}. The propositions proved in this paper grew out of a 
search for values of N for which Sr and Tf also have property A. 

2. Origin of the Problem 

This problem grew out of the following permutation problem. Let a be any 
proper divisor of N, N cards in a deck are numbered from 1 to I from the top 
down and are permuted as follows: Divide the deck into a equal piles and place 
them side by side in the order of their positions in the deck from the top 
down. Then pick up the top card from each pile in rotation, starting with the 
pile that came from the top, until all the cards have been picked up. 
Question: What is the order of the permutation? That is, how many repetitions 
of this procedure will restore all the cards to their original positions in the 
deck? It is not hard to prove that the answer is e repetitions, where e is the 
exponent that a belongs to modulo ( N - 1). (The proof is given in the 
Appendix.) (For example, for an ordinary deck of playing cards, N = 52. If 
the permutation is done with two piles, a = 2. Then a = 8, since 8 IS the 
least exponent for which 2e = 1 modulo 51.) This fact led to an examination 
of the set S! defined above. Since the set Tf is also well defined for any N9 
it is natural to examine this set as well. It is immediate that Sr or Tr has 
property A if N has a divisor that is a primitive A-root of (N - 1) or (N + 1), 
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respectively. Calculation for many values of N shows that there are many 
cases where Sr or Tr has property A even when N does not have a divisor that is 
a primitive A-root of (N - 1) or (N + 1), respectively. However, there are 
also values of N for which S! does not have property A. For N < 26,120, there 
are 130 values of N for which S' does not have property A. The first ten of 
these are 572, 1182, 1463, 1953, 2004, 2010, 2338, 2343, 2405, and 3002. (For 
example, for N = 572, S' = {1, 57, 114, 190, 285}. Since neither 114 nor 190 
is a divisor of 285, Sr does not have property A.) All 130 of these numbers 
have the property that they are divisible by three or more different prime 
numbers. Also, for N < 5254, there are 25 values of N for which Tf does not 
have property A. The first ten of these are 1085, 1434, 2354, 2409, 2849, 
2975, 3069, 3130, 3138, and 3154. (For example, for N = 1085, T' = {1, 2, 12, 
20, 30}. Since neither 12 nor 20 is a divisor of 30, Tr does not have property 
A,) All 25 of these numbers also have the property that they are divisible by 
three or more different primes. These observations led to the conjecture that 
if N has at most two different prime divisors, then Sr and Tr have property A. 
The purpose of this paper is to prove the conjecture. 

3. Definitions and Propositions 

For handy reference, we list below the definitions and propositions of ele-
mentary number theory that are relevant to this paper. 

Definition: If a and m are relatively prime positive integers, and e is the 
least positive integer such that ae = 1 mod (m) , then e is said to be the 
exponent to which a belongs mod (m). 

Definition (Euler's <j)-function) ; For any positive integer m, $ (m) is the num-
ber of positive integers not greater than m and prime to it. 

Proposition 3.0: If p15 p2, ..., p are the different prime divisors of m, then 

<K"0 = m{l - 1/p^d - l/p2) ... (1 - l/pn). (see [1], p. 32). 

Definition: For any positive integer m, X(m) is defined as follows: 

X(2a) = (j)(2a) if a = 0, 1, 2. 

A(2a) = (l/2)(f>(2a) if a > 2. 

X(pa) = §(pa) if p is an odd prime. 

X(2apl
1p22 ••• pa") = M, where M is the least common multiple of 

X(2a), X(pji), X(pa
22)3 ..., A(p^). 

Definition: If a belongs to X(m) modulo m, then a is said to be a primitive A-
root modulo m. 

Proposition 3.1: If (a, b) = 1, there exist positive integers x, y such that 
xa - yb - ±1. 

Proposition 3.2: If a and m are any two relatively prime positive integers, the 
congruence aA(m) E 1 mod m is satisfied (see [1], p. 54). 

Proposition 3.3: If a belongs to d mod m, and an = 1 mod 77?, then d is a divisor 
of n (see [1], p. 62). 

Proposition 3.4: Every modulus m has primitive A-roots (see [1], p. 72). 
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Proposition 3.5: If x belongs to the exponent ab modulo m, then xa belongs to 
the exponent b (see [2], p. 106). 

Proposition 3.6: If tf belongs to the exponent a and y belongs to the exponent b 
modulo m, where (a, b) = 1, then xy belongs to the exponent ab (see [2], p. 106). 

4. Propositions I and II 

Proposition I: If N has the form pa
s where p is a prime number/ then Sr and Tr 

have property A. 

Proof: The following argument is valid for congruences modulo (N - 1) or (N+ 1): 
Let p belong to g, and let pv belong to a7 for any p < a. Since pe E 1, it fol-
lows that (p2")6 E 1. Therefores by Proposition 3.3, d divides e. Then Sf and 
Tf have property A. 

Proposition IIA: If # has the form paqh
s where p and q are different primes, 

then Sr has property A. 

Proposition IIB: If N has the form paq&, where p and q are different primes, 
then T! has property A, 

The proofs for Propositions IIA and IIB are carried through separately 
below. 

5. Proofs of Some Preliminary Propositions 

Before proving Proposition IIA, we prove some preliminary propositions. We 
consider first the special case where (a, b) = 1. Since a and b are rela-
tively prime, then (with appropriate choice of notation, interchanging a and b 
if necessary) there exist positive integers x and y such that xa - yb = 1. 

Proposition 5.1: If (a, 2?) = 1, there exist integers x, y such that 0 < x < b 
and 0 < y < a and xa - yb = 1. 

(1) Can we have x < b and y > a? If we did, then 2? = # + s for some s > 0, 
and y = a + r for some v > 0. Then a^- (a+-r)(tf + s) = 1 yields 
-as - rx - TS = 1, which is impossible. 

(2) Can we have y < a and x > b1 If we did, then a = y + s for some s > 0, 
and x = b + r for some r > 0. Then (b + r) (y + s) - yb = 1, and frs + 
vy + vs = 1. This is impossible if s.> 0. If s = 0, vy = ls and 
hence v = 1 and z/ = 1. Then x = b + I, y = a = I* Then this case is 
possible only if N = pa2". However, with a change of notation, writing 
p for q and vice versa, and a for £> and vice versa, we could have 
written N = paq, and use x = l 9 y = a - l , so that we have x = b, y < 
a [see case (4) below]. Note that y is positive unless a = 1, in which 
case y = 0. 

(3) If # > 2? and 2/ > a, we can replace x by x - b and y by z/ - a, since 

(tf - 2?)a - (y - d)b = tfa - yb = 1. 

By repeated application of this procedure, we would ultimately get 
either case (2) above or case (4) below. 

(4) 0 < tf < b» and 0 < y < a» We can include case (2) in the changed no-
tation (N = paqs with tf = 1, y < a, and y = 0 only if a = 1) by per-
mitting y to be 0 if a = 1. We cannot have y = a9 because if y = a, 
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xa - ba = 1, a(x - b) = 1; thus a = 1, x = b + I, contradicting x < b. 
If x = by ba - by = 1, b(a - y) = 1. Then 2? = 1, z/ = a - 1. Conse-
quently, we may always assume x and z/ such that 0 < x < b and 0<y<a. 

Proposition 5.2: If (a, 2?) = 1, then S' has property ̂ . 

Proof: By Proposition 5.1, pyqx Is a proper divisor of /!/. Let e be the expo-
nent to which pVqx belongs modulo (N - 1). We now show that if pmqn is any 
proper divisor of /!/, and it belongs to f modulo (N - 1), then / divides e. We 
show first that the ordered pairs (0, 1) and (1, 0) are linear combinations 
(with integral coefficients) of (a, b) and (y, x): 

a(y, x) - y(a, b) = (0, ax - by) = (0, 1). 

x(a, b) - b(yf x) = {xa -by, 0) = (1, 0). 

(m, n) = /77(1, 0) + n(0, 1) = mx(a, b) - mb(y, x) + na(y, x) - ny(a, b) 

= (mx - ny)(a, b) - (mb - na)(y, x). 

We know that paqb E 1 modulo (N - 1) and (pyqx)e E 1 modulo (N - 1). Then 

(pV)e(OT*~ni/) E 1 a n d (pyqxy(™b-na) E K 

Therefore, 
(pa^eCms-ni/) = (p^x)e(^-na) m o d ( # _ 1 ) # 

Since p and g are prime to # - 1, we may divide by the right-hand member. This 
yields 

(pmqn)e = 1 modulo (N - 1). 

Therefore, f divides e. 

6. Proof of Proposition H A 

We consider now the general case, N = p3aq9b
 s where (a, b) = 1 and g > 1. 

Let {x, y) be determined such that xa - yb = I, 0 < x < b and 0 < y < a. Let e 
be the exponent that pVqx belongs to modulo (N - 1). Let pvqs be any divisor 
of N. 

p = (paqb)x(pyqx)~b. q = (paqb) '* (pyqx)a . 

p* = (paqb)rx (pyqx)-bv . qs = (paqb) ~sy (pyqx)as . 

Then p ^ s = ( p ^ ^ ) ^ " ̂  (pyqx)as ~ br. 

Let /" be the least common multiple of g and e. Then 

(prq8)f E (paqb)f(rx-sy)(pyqx)f(as-br) = i. 

If prqs belongs to /z modulo (/!/ - 1), it follows that h divides /. To complete 
the proof, we now show that there exists a divisor of N that belongs to f. In 
the special case where g is a divisor of e, the result is immediate, since then 
f = e, and p^g^ belongs to e. 

For the completely general situation, we express g and e as products of 
powers of primes. 

9 = Pi1 ••• P?k a n d « ' P?1 ••• P**, 
where the set W = {pls ..., p, } includes all the primes that occur in either g 
or e. (Some of the a^ and some of the bi may be zero.) Partition W into two 
disjoint sets U and V as follows: 

Vi e u if af > bi9 pi e 7 if at < bt. 
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Let 777 = n pai s n = n P a i • 9 = w^-
p-El/1- v. e V ^ 

Let w = H pbi , z = n Vhi - e = wz. 

Let 77? = w = 1 i f U i s empty. Let n = z = 1 i f V i s empty. 

p a q & be longs t o 77771. T h e r e f o r e , (paqb)n be longs to 777, by P r o p o s i t i o n 3 . 5 . 

pyqx be longs t o wz. T h e r e f o r e , (pyqx)w be longs to z. 

But 777 and z a r e r e l a t i v e l y p r ime . The re fo re , by P r o p o s i t i o n 3 . 6 , 

(paqb)n(pyqx)w be longs t o 777s = / . 
Let J = (paqh)n(pyqx)w = pna + wyqnb + wx. 

If w = 777 = 1, then f = e , which is an element of Sr; otherwise, w < m, y < a, 
and x < b. Then 

na + wy < (n + m)a and n/3 + TJX < (n + 777)2?. 

m = n only if TT? = n = 1, in which case ̂  = 1, a case already disposed of. 

Assume now that m * n. 

A. If m>n, m=n+d, d>0. Then 777 + rz = In + d and mn = n2 + nd. 

If n > 1, mn > m + n. Then 

(n + m)a < mna = ga and (n + m)b < mnb = gb. 

Then J is a divisor of N. 

If n = 1, m = g and w < g. Then 

na + wy = a + wy < a + wa = a(l + w) < ga. 

nb + wx = b + wx < b + wb = b(l + w) < gb. 

Then J" is a divisor of N. 

B . I f n > 777, n = 77? + J , d > 0 . 777 + n = 2777 + d , 77771 = 7 7 7 2 + 7 7 7 d . 

If 777 > 1, mn > m + n. Then, as in A above, J is a divisor of N. 

If 777 = 1, then g = n, and g divides e, a case dealt with above. 

Since J is a divisor of N, and J belongs to / modulo (N - 1) , Sr has 
property A. 

1. Proofs of Some Preliminary Propositions 

Here we prove some preliminary propositions that will be used in the proof 
of Proposition IIB. 

Proposition 7.1: Let N = p^aqgb, where (a, b) = 1. Then pa qb belongs to 2g 
modulo (N + 1). 

Proof: N2 = 1 modulo (N + 1). Let paqb belong to 777. Then, since (paqb)29 = 1, 
777 = 2g/k for some positive integer k. Ifk>2, then m < g and p'^qmb < j\/9 
while (paqb)m E 1. This is impossible, since all the numbers 0, 1, 2, ..., N 
are noncongruent modulo (N + 1). Therefore, k = 1 and m = 2g. 

Proposition 7.2: If JJr = N, and J belongs to 777 modulo (21/ + 1), and Jr belongs 
to n modulo (N + 1) , then either both 777 and n are even and 777 = n or m Is odd and 
n = 2777 or n is odd and 77? = 2n. 
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Proof: (JJr)2 = 1 modulo (N + 1). Therefore, [Jm(J')m]2 = 1. Hence, (Jr)2m = 
1. Consequently, 2m = kn for some positive integer k. Similarly, 2n = mh for 
some positive integer h. Therefore, hk = 4. Consequently, /< = 1, 2, or 4. If 
k = l, n = 2m. If k = 2, m = n. If /c = 4, w = 2n. If m is even, we have both 
Jm and ^(J')7* congruent to 1 modulo (/!/ + 1). Then..(e7')w = 1 and n divides m. 
Similarly, if n is even, m divides n. Therefore, if both m and n are even, m = 
n. If m is odd and n is even, then n = 2???; if n is odd and m is even, then 77? = 
2n. Moreover, m and n cannot both be odd, for if they were it would be 
necessary that m = n. It would follow that (JJr)m E 1, and 2 would be a divi-
sor of m, which is impossible. 

Proposition 7.3: If J is a divisor of 21/ and J" = NJ9 and J" belongs to m modulo 
(N + 1) and J" belongs to n, then either both m and n are even and m = n, or m 
is odd and n = 2m, or n is odd and m = 2n. The proof is similar to the proof 
of Proposition 7.2. 

Proposition 7.4: (Corollary of Propositions 7.2 and 7.3) If J is a divisor of 
N and Jr = N/J and Jft = NJ, and the exponent that either J or Jr or J"" belongs 
to is divisible by 4, then all three belong to the same exponent. 

8. Proof of Proposition IIB 

We consider first the special case where (a, b ) = 1. By Proposition 5.1, 
there exist integers x and y such that xa - yb = 1, with 0 < x < b and 0 < y < 
a, so that pyqx is a divisor of N. Let pVqx belong to e modulo (N + 1). pa^^ 
belongs to 2. Let pa~yqb-x belong to g. Let pp^s be any divisor of N. Then, 
as shown in Section 6, 

prqs = (paqbyx-sy(pyqx^as-brt 

Let / be the least common multiple of e and 2. Then (prqs)f =1. Consequently, 
the exponent that every divisor of N belongs to is a divisor of f. If g is 
even, f = e. If e is odd, ̂  = 2e by Proposition 7.2. Then f = g. In either 
case, / is an element of Tf. Therefore, Tr has property A. 

If N = p9aq9b, where (a, b) = 1 and ^ > 1, let (x, 2/) be determined as 
before such that xa - yb = 1, with 0 < x < b and 0 < y < a. Again, let pyqx 

belong to e modulo (N + 1). By Proposition 7.1, paqh belongs to 2g. As shown 
above, if prqs is any divisor of N, 

prqs = (paqbyx-sy{pyqX)as-bra 

Let / be the least common multiple of e and 2g. Then (prqs)f = 1 modulo (N + 
1), and the exponent that each divisor of N belongs to is a divisor of f. To 
complete the proof, we must show that there exists a divisor of N that belongs 
to f, so that f would be an element of Tr. Express 2g and e as products of 
powers of primes. 

2<7 = Pi1 ..- p£*, e = p \ i ... p£*, 
where, as in Section 6, W = {p15 ..., p, } includes all the primes that occur in 
either 2g or e. Define U, V, m, n, w, and z as in Section 6. Then paqh 

belongs to rnn = 2g, and pyqx belongs to wz = e. (paqb)n belongs to m, and 
(pyqx)w belongs to z. Then (paqb)n (pyqx)w belongs to mz = f. Let 

J = (paqb)n (pyqx)w = pna + wyqnb+wxe 

If 772 = 1, then w = 1, and f = e, which is an element of Tr. If 777 * 1, then W < 
777. Thus, 

na + wy < (n + m)a and nb + wx < (n + m)b. 
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(a) Consider f i r s t n, m > 3. If n = m = 4, then n + m < (l/2)mn = g . By 
induction on m and n separately, i t follows tha t , for a l l m, n > 3, 

na + wy < ga and nb + wx < gb. 

Consequently, J" is a divisor of N, and /is an element of T!. 

(b) If m = 3, then n is even, since 7?7n = 2g. Suppose n > 6. Then, by in-
duction on n, m + n < (l/2)mn, and J" is a divisor of /!/. Similarly, if n = 3, 
then m is even, and If m> 6, m + n< (1/2) mn9 and J is a divisor of N. 
Therefore, for m or n = 3, we have left for consideration only m = 3 and n = 2, 
or 772 = 3 and n = 4, or m = 2 and n = 3, or m = 4 and n = 3. The cases where m 
or n = 2 are considered in (c) and (d) below. If m = 3 and n = 4, 2g = 12, and 
g = 6. It follows that w = 3°  = 1. Then 

na + uz/ = 4a + z/ < 5a < ga and n/3 + wx = kb + x < 5b < gb. 

Then J" is a divisor of /!/. If n = 3 and ^ = 4,2^= 12, and g = 6. Then w = 2 
or 1. If u = 1, 

na + wy = 3a + z/ < ka < ga and nb + wx = 3b + x < 4/3 < gb. 

If w = 2, 
na + zjz/ = 3a + 2y < 5a < ga and nb + wx = 3b + 2x < 5b < gb. 

In both cases, then, J" is a divisor of N. 

(c) If 777 = 2, then w = 1, 2a = 2n, g = ns and e = s, which is odd. f = mz 
= 2e, which is the exponent that p9a~ Vqgb- x belongs to. Therefore, / is an 
element of I". 

(d) If n = 2, m = a, and m is odd. Therefore, a is odd. 

w < (1/3)772 = d/3)a. 

na + wz/ < 2a + (l/3)aa = (2 + a/3)a. 

Since 3 < a (because g > 1 and is odd), 2 < 2g/3. Then 

na + wy < (2a/3 + a/3)a = ga. 

Similarly, nb + wx < gb. Consequently, J" is a divisor of N. 
(e) If n = 1, 7?7 = 2g, and w < (1/2)777. Consider first U < (1/2)777. Then 

Zj < (1/4)777 = (1/2)0. 

na + wz/ < a + (l/2)ga = (1 + g/2)a. 

Since 2 < g, 1 < g/2. Then 

na + wy < (g/2 + g/2)a = ga. 

Similarly, nb + wx < gb. Then J is a divisor of /!/. 
(f) If U = (1/2)777, W = g and the only element of [/ is 2. Consequently, g 

is a power of 2. Then /, which equals 2gz, is divisible by 4. e = ws = gs. / 
= 7772 = 2gs, and s is odd. J = -pa+9yqb+gx, a + gy < 2ga and 2? + ga: < 2gb. If 

a + gz/ < ga and /3 + gx < gb * 
J is a divisor of N. Still to be dealt with is the case where either a + gy > 
ga, or b + gx > gb. If a + gy > gas y > a(g - I)Ig. Since xa = by -f 1, 

xa > ab(g - l)/g + 1. 

Thus, ga: > (g - l)/a + g/a; 2? + gx > gb + g/a > g/3. Then Jf = J/N is well de-
fined and is a divisor of N. Now, by Proposition 7.4, since J = JfN and / is 
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divisible by 4, Jr belongs to f. Therefore, / is an element of 2". Suppose b 
+ gx > gb. Then x > b(g ~ I)/g> Since by = xa - 1, 

by > ab{g - 1) I'g - 1. 

Then gy > (g - \)a - gib and a + gy > ga - gib . If g < b , a + gy > ga. Then 
J! = J/N is well defined, is a divisor of N, and belongs to f. If g > b, 

b + gx < g + gx = g(l + x) < gb if x < b. 

This contradicts the assumption that b + gx > gb. Thus, the case x < b cannot 
occur in this context. If x = b, since ax - by = 1, b(a - y) = 1. Then b = 1 
and y = a - 1. b+gx=g+l>bg. 

a + gy = a + g(a - V) = ga + (a - g) > ga if a > g. 

Then, as above, Jr = J /N is well defined, is a divisor of N9 and belongs to f. 
Now suppose that g > a. Recall that x = b = 1, and y = a - 1. N = p9aqg. paq 
belongs to 2g9 which is divisible by 4. Therefore, p&a~aqg _1 belongs to 2g, 
which is a power of 2. p^g* = pa~lq belongs to gz. Then p9a~9q9 belongs to z> 
which is odd. Thus, p^ga - g-aqZg-1 belongs to 2gz. Let 

jn = p2ga- g- <2q2g-l 

and let 
jr = J////I/ = pga-g-aqg-lr 

Assume a > 2. Then ^ ( a - l ) - a < 0 only if ^ < a/(a - 1) < 2. But ^ > a > 2. 
Therefore, for a > 2 , 0 < ^ a - ^ - a < ^ a . Moreover, 0 < g - 1 < g. Then J"' 
is a divisor of /!/. Since JrF belongs to 2gz which is divisible by 4, J' belongs 
to 2gz, which equals /. Then f is an element of Tf. What remains to be dealt 
with now is the case where a = 1, g > 1. Then we have N = pgq9. g = 2° for 
some c > 0. a = b = l s x = l 9 y = a - l = 0. pa qh = pq belongs to 2g, and 
pyqx - q belongs to gz. Therefore, qg belongs to z which is odd. Thus, p$ 
belongs to 2z. Let p belong to e'. Then e1 divides 2gz, so that 2gz = e Th for 
some positive integer h. Since (pg)e' = 1, 2z divides e1, so that e* = 2zk for 
some positive integer k. Then 2gz = e rh = 2zkh. Thus, kh = g. Consequently, 
k is a power of 2 such that 1 < k < g. Then possible values of e1 are 2s, 4s, 
8z, ..., ̂ s, 2^s. If e ' = 2^s, then f=er, which is an element of T'. If e l 

= gz, then p9 belongs to z, contradicting the fact that p9 belongs to 2z. So 
this case cannot arise. If e r = gz/t with t > 1, then we would have p9Z//t E 1, 
from which it follows that (p9*/t)t = i9 which implies that {pg)z E 1, which 
implies that 2z divides z* Hence, this case too cannot arise. 
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Appendix 

Let b = N/a. The cards are in a piles, with b cards in each pile. This is 
equivalent to a rectangular array with a columns and b rows. Consider the card 
in row h, column k (h = 1, 2, ..., b; k = 1, 2, ..., a). Let x designate its 
original position in the deck. Let f{x) be its new position as a result of the 
permutation, x = (k - l)b + L f(x) = (h ~ l)a + k. Direct calculation shows 
that 

fix) = ax - (a - 1) - (k - 1)(N - 1). 
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Therefore, f(x) - ax - (a - 1) modulo (N - 1) . Designate by fi{x) the posi t ion 
of the card af ter i r epe t i t ions of the permutation. Then, by induction, 

/*(#) = aix - {a1 - 1) modulo (717 - 1). 
I t follows that fi{x) = x if and only if a1 = 1 modulo (N - 1) . 
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The number of possible light paths in a stack of two glass plates can be 
expressed in terms of Fibonacci numbers, as was first pointed out by Moser [1]. 
If two glass plates are placed together in such a way that each surface can 
either reflect or transmit light, then the number of distinct paths through the 
two plates with exactly n internal reflections is Fn+2° 

Junge and Hoggatt [2] used matrix methods to count reflections in larger 
numbers of plates. Hoggatt and Bicknell-Johnson [3] used geometric and matrix 
techniques to count specific sets of reflections. However, these authors did 
not present a general recurrence relation for the number of distinct light 
paths with a fixed number of reflections in an arbitrary number of glass 
plates. Here we shall present such a recurrence relation. 

Consider a single ray of light directed into a stack, of r glass plates. Let 
Tr(n) be the number of distinct paths that can be taken by a light ray en-
tering through the top plate, leaving through either the top plate or the 
bottom plate, and having exactly n internal reflections. Figure 1 illustrates 
the distinct light paths in two plates with zero, one, two, and three 
reflections. 

n = 0 n = 1 n = 2 n=3 

FIGURE 1 

As a light ray passes through the stack of plates in a fixed direction, 
there are a total of r internal surfaces from which it could be reflected. 
(The surface crossed by the light ray as it enters the stack of plates cannot 
cause an internal reflection.) Number the reflecting surfaces from 1 to r 
along the direction of the ray. Figure 2 illustrates this numbering scheme; 
the path shown consists of reflections from surfaces 2-3-3-2-2. 
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