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1. Generalities

The idea of writing this note was triggered by the necessity that occurred
in the course of our research job, of expressing the quantity x” + y” (x and y
arbitrary quantities, »n a nonnegative integer) in terms of powers of xy and x +
y. Such expressions, commonly referred to as Waring formulae, are given in
high school books and others (e.g., see [1]) only for the first few values of
7, namely

20+ y0 =2

2l +yl =z +y

22 +y? = (x + y)2 - 2ay (1.1)
x3 + y3 = (x + y)3 - 3xy(x + y)

o+ oyt o= (e Y - bxy (e + )2+ 2(ay) 2.

Without claiming the novelty of the result, we found (see [2]) the following
general expression

[n/2]
zn Yyt = Y (-DRC, ) (e + y)nT2k, (1.2)
k=0
where
Co 0 = 2
n n - k° (1.3
Cn,k = n - k( k ) = nEn,k (ﬂ 2 1)

and [a] denotes the greatest integer not exceeding a.

Several interesting combinatorial and trigonometrical identities emerge
(see [2]) from certain choices of x and y in (1.2). In particular, sensing
Lucas numbers L, on the left-hand side of (1.2) is quite natural for a Fibo-
nacci fan. In fact, replacing z and y by a = (1 + /5)/2 and 8 = (1 - ¥5)/2,
respectively, we get

Work carried out in the framework of the Agreement between the Fondazione "Ugo Bordoni" and
the Italian PPT Administration.
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[n/2]
Iy= Y Cpx (n=20), (1.4)
K=o
that is
L,=1+mnS, (n=1), (1.5)
where [n/2] (n/2]
n
_ 1 n - k\ _
e X% — ("2 ") - P AE (1.6)

We point out that the equality (1.5) can also be obtained using the relation-
ships (see [3], [4])

L,=F,_  +F,, (1.7)
(/2]
_ n -k
Fasl = 2 ("2 ) (1.8)

where F, stands for the nth Fibonacci number.
Observing (1.5), the following question arises spontaneously:

"When is the congruence
L, =1 (mod n) (n > 1) (1.9)
verified?"
The obvious answer is:

"The congruence (1.9) holds iff S, is integral."

Theorem 1: If n is relatively prime to k (1 < k < [n/2]), then B, ; is a posi-
tive integer.

Proof: The statement holds clearly for k = 1. Consequently, let us consider
the case 2 < k < [n/2]. Letting

k-1
Bpx = L=k =), (1.10)
i

it suffices to prove that, if »n is relatively prime to k, then P . /k! is inte-
gral. It is known [5] that ’

P,x =0 (mod (k - 1)),

that is,

Ap, i = Py /(K = 1)1 (1.11)
is an integer. Again, from [5] we have

(n - k)Pn,k = 0 (mod k!) (1.12)
whence, dividing both the two sides and the modulus by (k - 1)!, we can write

(n - k)4, =0 (mod k), (1.13)

see [6, Ch. 3., Sec. 3(b)]. If n is relatively prime to k, from (1.13) it fol-
lows that

n-k#0 (mod k), (1.14)
Ay x =0 (mod k). (1.15)

From (1.15) and (1.11), it appears that, if n is relatively prime to k, then
P,k =0 (mod k!). Q.E.D.
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From Theorem 1 it follows that, if n is prime, all addends Bn,k’ cf. (1.6),
are integral. Therefore, S5, is integral. This is a further proof of the well-
known result (see [7])

L, =1 (mod n) (if n is a prime). (1.16)

2. On the Fibonacci Pseudoprimes

The sum S, can be integral also if n is not a prime. In particular, this
sum can also be integral if two or more of its addends B, x are not integral.
The composite numbers n which satisfy this property, i.e., for which congruence
(1.9) holds, are called Fibonacei Pseudoprimes (see [8]), which we abbreviate
F.Psps. and denote by @, (k =1, 2, ...).

Proposition 1: A composite number »n is a F.Psp. iff S, is integral.

The smallest F.Psp. is ¢; = 705. It was discovered by M. Pettet in 1966
[9] who discovered also @y = 2465 and (3 = 2737, but we cannot forget the un-
believable misfortune of D. Lind [10] who in 1967 limited his computer experi-
ment for disproving the converse of (1.6) to n = 700, thus missing the mark by
a hair's breadth. In the early 1970s, J. Greener (Lawrence Livermore Lab.)
discovered @, and §s [7]. To the best of our knowledge, the F.Psps. are known
up to @7 = 6721. The discovery of Qg and @; is due to G. Logothetis [8].

Curiosity led us to discover many more F.Psps. Using the facilities of the
Istituto Superiore P.T. (the Italian Telecommunication Ministry), a weighty
computer experiment was carried out to find all F.Psps. within the interval [2,
106]. They are shown in Table 1 together with their canonical factorization.
The computational algorithm is outlined in Section 3, where a worked example is
also appended.

Inspection of Table 1 suggests some considerations on the basis of which we
state several propositions and theorems. Most of them show that certain
classes of integers are not F.Psps., thus extending the results established in
[8, Sec. 6]. Some conjectures can also be formulated.

Consideration 1: No even F.Psps. occur in Table 1.

Proposition 2:
(1) Lg, £ 1 (mod 6m)
(i1) Lgu+p # 1 (mod 6m + 2) (n odd)
(iii) Lguey 2 1 (mod 6m + 4) (n even)

Proof:
(i) The congruence Lg, = 0 (mod 2) implies that 6nJ/L6n - 1.

(ii) Using the identities [11, formula (11)] and I23, Iy (from [3]), it can
be proved that

n-1
Lgpgp = 1)/2 = Fgpp + kgl Fap - (z.1)
Since Fg3;, = 0 (mod 2) and Fg,,o = 1 (mod 2), the quantity on the left-hand side
of (2.1) is clearly odd, that is,
Lgpso = 1 #0 (mod 4).
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Since, for n odd, the congruence 6n + 2 = 0 (mod 4) holds, it follows that
6n + 2fLg,., =~ 1 (n odd).

(iii) The proof is similar to that of (ii) and is omitted for brevity. Q.E.D.

TABLE 1
Q = 705=3-5-47 Quq = 252601 = 41-61- 101
Q) = 2465=5-17-29 Q45 = 254321 =263 - 967
Q3 = 2131 =7-17-23 Qqg = 257761 =7-23-1601
Qq = 3745=5-7-107 Q47 = 268801 =13-23-29-31
Qs = 4181 =37-1I3 Qug =" 272611 =131-208]
Qg = 5777 =53-109 Qg0 = 283361 =13-71-307
Q = 6721 =11-13-47 Qs = 302101 =317-953
Qg = 10877 =73-149 Qsp = 303101 =101 - 300!
Qg = 13201 =43-307 Qsp = 327313 =7-19-23-107
Qjp = 15251 =101 - 151 Q33 = 330929 =149 - 2221
Qpy = 24465 =3-5-7-233 Q34 = 399001 =31-61-211
Qqp = 29281 =7-47-89 Qss = 430127 =463 - 929
Qi3 = 34561 =17-19-107 Qsg = 433621 =199-2179
Qua = 35785 =5-17-421 Q37 = 438751 =541 - 81!
Qis = 51841 =47-1103 Qsg = 447145 =5-37-2417
Qg = 54705 =3-5-7-521 Q39 = 455961 =3-11-41-337
Q7 = 64079 =139 461 Qgo = 489601 =7-23 - 3041
Qg = 64681 =71-911 Qgi = 490841 =13-17-2221
Qo = 67861 =79-859 Qgp = 497761 =11-37-1223
Qyp = 68251 =131-521 Qg3 = 512461 =31-61-271
Qy1 = 75077 =193 -389 Qga = 520801 =241 -2161
Qyp = 80189 =17-53-89 Qgs = 530611 =461 - 1151
Q3 = 90061 =113-797 Qgg = 556421 =431 - 1291
Qya = 96049 =139-691 Qg7 = 597193 =7:23-47-79
Q35 = 97921 =181 -541 Qeg = 618449 =13-113 -421
Qe = 100065 =3-5-7-953 Qgo = 635627 =563 - 1129
Q3 = 100127 =223 - 449 Q70 = 636641 =461 - 1381
Qyg = 105281 =11-17-563 Q71 = 638189 =619 - 1031
Qo = 113573 =137-829 Qg2 = 639539 =43-107- 139
Q3p = 118441 =83 - 1427 Q73 = 655201 =23-61-467
Q31 = 146611 =271 -541 Q74 = 667580 =13-89-577
Q3 = 161027 =283 - 569 Q75 = 687169 =7-89- 1103
Q33 = 162133 =73 - 2221 Qg = 697137 =3-7-89-373
Q34 = 163081 =17-53-181 Qq7 = 722261 =491 - 1471
Q35 = 179697 =3-7-43-199 Q78 = 741751 =431-1721
Q3¢ = 186961 =31-37-163 Q79 = 851927 =881 - 967
Q37 = 194833 =23-43-197 Qgo = 852841 =11-31-41-61
Q3g = 197209 =199 - 991 Qgy = 853469 =239 - 3571
Q39 = 209665 =5 - 19 -2207 Qgy = 920577 =3-7-59-743
Qa0 = 219781 =271 - 811 Qg3 = 925681 =23 167 - 241
Qqi = 228241 =13-97-181 Qga = 930097 =7-23-53-109
Qqp = 229445 =5-109 - 421 Qgs = 993345 =3-5-47-1409
Q43 = 231703 =263 - 881 Qgg = 999941 =577 - 1733

It must be noted that the well-known result [7] Lok £ 1 (mod 2%) (k= 2)
appears to be included in the incongruences (ii) and (iii).

Proposition 2 can be summarized by the following

Theorem 2: I1f n is even but n =z 2(6k * 1) (k = 1, 2, ...), then n is not a
F.Psp. :

The set of integers of the form 2(6k * 1) contains all numbers that are
twice a prime greater than 3.

Proposition 3: If n = 2p is twice a prime and 1 < k < p - I, then the fraction-
al part of B, , is either 0 or 1/2.

The proof of Proposition 3 is based on the argument used in the proof of
Theorem 1 and is omitted for brevity.
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Since the last term of the sum SZp’ cf. (1.6), is sz,p = 1/p, from Propo-
sition 3 it follows that the fractional part of this sum is either 1/p or 1/p +
1/2. Noting that, in the particular case p = 2, the fractiomal part of §, is
clearly 1/2, from Proposition 1 we have

Theorem 3: 1f n is twice a prime, then n is not a F.Psp.

On the other hand, the same result can be obtained using the congruence [7]

Lkp = Ly (mod p) (p a prime) (2.2)

whence we get Ly, - 1 = 2 (mod p), that is, ZpJ’sz - 1.
Now, let us consider the integers of the form 2(6k * 1) with 6k * 1 compos-—
ite and state the following

Theorem 4: 1If n = 2(6k *# 1) and ¥ = ¥1 (mod 5) (i.e., if n is even, divisible
by 5 and not divisible by 3 and 4), then n is not a F.Psp.

Proof: The identity I,, [3] cau be rewritten in the form

_ 2
byamery =1 = 5Fpp. =3
whence we obtain the congruence
= 2.
Ly(omse1y = 1 = 2 (mod 5), (2.3)

which implies that 2(6k % 1) [ L, g4,y — L if 6k + 1 = 0 (mod 5), that is, if
k = 71 (mod 5). Q.E.D.

Finally, we observe that there exist F.Psps. of the form 6k * 1 with k Z 71
(mod 5) (e.g., QGS = 6 + 88435 + 1 and Q66 = 6 + 92737 - 1) and state the fol-
lowing

Theorem 5: If n = 2k + 1 is a F.Psp., then 2n is not a F.Psp.

Proof (reductio ad absurdum): Let us suppose that

Ly(oks1y = Dugyp = 1 (mod 4k + 2). (2.4)

From identity 118 [3] and (2.4), we can write

— - 72
Dygep =22 -1 215, 4 (mod 4k + 2),
whence we obtain the congruence
2 = -
Ly = -1 (mod 2k + 1) (2.5)

which contradicts the assumption. Q.E.D.

Consideration 1, together with Theorems 2, 3, 4, and 5, allows us to offer
the following

Conjecture 1: F.Psps. are odd.

Consideration 2: The F.Psps. listed in Table 1 are given by the product of a
certain number of distinct primes.

Using (2.2), one can readily prove the following

Theorem 6: 1f py, p,» ..., p, are distinct odd primes, then n = p;p, ... p, is
a F.Psp. iff L, ,, = I (mod p,) (Z =1, 2, ..., k).
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For example, we see that
Lig = 1 (mod 47)
3e 5047 = Ql @ {L;,; =1 (mod 5)
Ly35 =1 (mod 3).

On the basis of Theorem 6, we observe that, if p and g are distinct odd primes
(g > p), then

Ly 1 (mod q)
qu = 1 (mod pq) < (g > p). (2.6)
Lq = 1 (mod p)
Now, the upper congruence on the right-hand side of (2.6) is clearly impossible
for p = 3, 5, 7, 11, 13. It follows that n = pq is not a F.Psp. for the above
values of p. The smallest p such that n = pg is a F.Psp. is p = 37.
In [8] the authors show that, for the conjecture L, # 1 (mod n2) m > 1),

it follows that pk (p a prime, kK > 1) is not a F.Psp. We formulate the follow-
ing

Conjecture 2: F.Psps. are square-free.

Consideration 3: The rightmost digits of the F.Psps. listed in Table 1 are not
uniformly distributed.

The occurrence frequency f(c¢) of the rightmost digit ¢ of the F.Psps. with-
in the interval [2, 10°] is shown in Table 2.

TABLE 2

e fle)

45

6
11
13
11

O N U

Moreover, it can be noted that, in the same interval, only 177 of the
F.Psps. are of the form 4n + 3. Hence, the F.Psps. congruent to 3 both modulo
4 and modulo 10 are supposedly very rare.

Consideration 4: The density of the F.Psps. less than n shows a comparatively
slow decrease as n increases, within the interval [2, 10°7.

Conjecture 3: There are infinitely many F.Psps.

Let g(n) denote the number of F.Psps. smaller than or equal to a given pos-
itive integer n. Numerically, the F.Psp.-counting function g(n) seems asymp-—
totically related to the prime-counting function m(n) (cf. [4, p. 204].

Conjecture 4: q(n) is asymptotic to (/1) /a.

The behaviors of g(n) and ﬁ(/ﬁ)/a vs n are plotted in Figure 1 for 2 < n <
108, #(x) = x/1n x being the Gauss estimate of m(x).
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FIGURE 1

Behaviors of g(n) and 7 (V/n)/a vs n

We conclude this section by pointing out that, for a given odd prime p, it
is possible to find out necessary (sufficient) conditions for n = pk (k an
integer greater than 2) to be (not to be) a F.Psp.

Hinging upon the periodicity of the Lucas sequence reduced modulo p (P
being the period), we observe that

Ly =1 (mod 3) iff n = 1, 3, 4 (mod 8)
Ly =1 (mod 5) iff n = 1 (mod 4)
Ly =1 (mod 7) iff n = 1, 7 (mod 16)
=1 (mod 11) iff n = 1 (mod 10) (2.7)

LL” = 1 (mod p) iff n = Pis Loy cees Ty (mod P).

It is readily seen that, if n = pk # 7}, rp, ..., s (mod P), then L,; # 1 (mod
p) and a fortiori Ly # 1 (mod pk), that is, n = pk is not a F.Psp. As an ex-
ample, solving some of the congruences (2.7) pk = r;, ry, ..., r, (mod P) in k
and taking into account that an even integer not of the form 2(62 * 1) (cf.
Theorem 2) is not a F.Psp., lead to the statement of the following

Theorem 7: 1If either n = 3k and kK # 1, 3 (mod 8)
or n = 5k and ¥ # 1 (mod 4)
ornm=7kand k # 1, 7 (mod 16)
or n = 11k and ¥k # 1 (mod 10)
or m = 13k and k¥ # 1, 13 (mod 28)
or m = 17k and k¥ # 1, 17 (mod 36)
or n = 19k and k £ 1 (mod 18),

then n is not a F.Psp.

Denoting by M, = 2" - 1 the n'h Mersenne number, we can state the follow-
ing corollary to Theorem 7.

Corollary 1: 1f n = 2h and & 2 2, then M, is not a F.Psp.

Proof: Since M, = 222 — 1 = 0 (mod 3) and k = (22" - 1)/3 = 5 (mod 8), the
proof follows directly from the first statement of Theorem 7. Q.E.D.

Furthermore, considering the following classes of composite integers con-
gruent to 3 modulo 10 (cf. Consideration 3 for ¢ = 3):
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ny = 3(10k + 1) (k =1, 2, ...)
ny, = 13(10k + 1) (k = 1, 2, ...)
ng = 11(10k + 3) (k = 0, 1, ...)
ny = 19(10k + 7) (k =0, 1, ...)
ng = 7(10k +9) (k =0, 1, ...)
ng = 17(10k + 9) (k =0, 1, ...)

the intersection of which is not empty, we can state the following further cor-
ollary to Theorem 7.

Corollary 2: If either n = n; and k # 0, 1 (mod 4)
or n =ny, and kK # 0, 4 (mod 14)
or n = ng
or n = ny and kK # 3 (mod 9)
or n = ng and k # 3, 4 (mod 8)
or n = ng and k # 8, 10 (mod 18),

then n is not a F.Psp.

3. A Computational Algorithm to Find L, Reduced Modulo n

The algorithm described in the following finds the value of <L,>, (L, re-
duced modulo n) after [logzn] recursive calculations. The values of n compos-—
ite (2 < »n < 10%) for which <Ly>, = 1 correspond, obviously, to the F.Psps. Qk
shown in Table 1.

Step 1: Decompose n as a sum of powers of 2.
m .
n = ZaiZ", (3.1)
=0

where m = [logzn] and g; can assume either the value 0 or the value 1.

Step 2: Starting from the initial values

L, =L, =1
k 1
0 (3.2)
Eko =F =1,
calculate the pairs
(Lki’ Fki) (=1, 2, «e.y, m=1) (3.3)
where k, = 1 and
Zki—l ifa, ;=0
k; = (3.4)
2k, 4 +1 if q, ; = 1.

The pairs (3.3) can be calculated, on the basis of the previously obtained
values, using the identities

Ly, = L2 + 2(-1)k"1, (3.5)
Lywer = Lp(BF, + Ly)/2 + (-1)k71, (3.6)
Fop = Flys (3.7)

and
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Fopi1 = Dp(Fy + L) /2 + (-1F7L, (3.8)
derived from identities I, Igs Iy55 I7g> and Ig, [3].

Step 3: Calculate L, using

L2km_1 if ap =
L, = (3.9)
Lka-1+1 if a, = 1.

I
(]

End.

The algorithm works modulo n throughout. We recall, cf. (3.6) and (3.8),
that the multiplicative inverse of 2 modulo an odd n is (n + 1)/2.

As a practical example, the various steps to find <I,>, for n = §,; = 90061
are shown in the following.

Qy3= 90061 = 216 4 214 4 212 4 211 4 210 4 29 4 28 4 27 4 26 4 23 4+ 22+ 20

m =16
v I -4 k" <Lki >Q23 <Fki >Q23
0 1 1 1 1
1 0 2 3 1
2 1 5 11 5
3 0 10 123 55
4 1 21 24476 10946
5 1 43 86547 30844
6 1 87 78960 73765
7 1 175 278906 89112
8 1 351 89985 90027
9 1 703 9349 4181
10 1 1407 26554 23164
11 0 2814 27349 70287
12 0 5628 11194 17179
13 1 11257 69119 26137
14 1 22515 59408 0
15 0 45030 90059 0
16 1 90061 1 -

4. Conclusions

We think that a thorough investigation of the behavior of the fractional
part of the quantity B, %, cf. (1.6), as n and k vary could lead to the dis-
covery of further properties of the F.Psps.

4.1. A practical application

If we could know g priori that an integer N is not a F.Psp., then the algo-
rithm developed in Section 3 would ascertain the primality of WV.

On the other hand, the proof of Conjecture 4 would suffice to make the
above algorithm an efficient probabilistic test for the primality of large
numbers. Besides being interesting per se, this algorithm could find an
application in modern cryptography. Currently, probabilistic testing for the
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primality of large numbers (more than 100 digits) plays a relevant role in the
so-called public-key cryptosystems [12]. The most widely used probabilistic
test is the SS (Solovay & Strassen) test [13]. The computational complexity of
a single step of this test is slightly greater than the complexity of our
algorithm. Usually, 100 steps of the SS algorithm are required, thus assuring
that V is prime with probability p; = 1 - 1/2100 » 1 - 7.88+ 1073l 1If Conjec-
ture 4 were proved, we could state that a sufficiently large number N satisfy-
ing the congruence Ly = 1 (mod V) is prime with probability py = 1 - 2/(a/N).
It can be readily proved that, if /N has more than 61 digits, Py, > Py - For ex-
ample, if N is a 100-digit number, we have Py » 1 - 3.9 10-50,

4.2. A remark

We wish to conclude this section and the paper with a remark. It appears
that QS = F19 and Q17 = L23. We asked ourselves whether this fact has an inti-
mate significance and whether there exist other F.Psps. which are either Fibo-
nacci or Lucas numbers.

First we noted that 2 = 19 is the smallest prime such that Fj is composite:
Fig = 4181 = 37 +113. Moreover, if we exclude k = 3 (recall that L3, is even)
k = 23 is the smallest prime such that L, is composite: L,3 = 64079 = 139 « 461.
The subsequent values of % and k that verify this property are 4 = 31 and k =
29. Using the algorithm described in Section 3, we ascertained that

LF31 =1 (mod Fyy) (Fy = 1346269 557 < 2417)

and

]

LL29 = 1 (mod L,q) (L,q = 1149851 59 - 19489).

The following question arises: "Are all the composite Fibonacci and Lucas
numbers with prime subscript, F.Psps.?"

Furthermore, we found that
LL32 = 1 (mod L32),

Lg, = 4870847 = 1087 - 4481 being the smallest composite Lucas number of which
the subscript is a power of 2.
Finally, we note that QG = I - 1. A brief search showed that the small-

18
est F.Psp. equal to a Fibonacci number diminished by 1 is

Fyy = 1 = 3524577 = 3 +7 « 47 3571,
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Let (f,)nen, denote the Fibonacci sequence:

fo=0 =L fl = fu *f (20

For a positive integer m, let m = {1, 2, ..., m}. In [5] L. Weinstein proves
by an inductive argument the following

Theorem 1: For a positive integer m let 4 C {f,: n€ 2m} with |A| =2m + 1. Then
there are f3, f; €4, k # j, such that f'klf'j.

Proof: It is a well-known fact that fk|fj for klj (see, e.g., [4]). Hence, it
suffices to show that, for B C 2m with |B| =m+ 1, there are k, jE€B, kK =z j,
such that klj. Let 2°® denote the exact power of 2 dividing the positive
integer b, and define, for all re 2m, 2*1/7,

B, = {beB: b/2°P = »}.
Obviously, LY.,JBY. = B. Since IB] =m+ 1, the pigeon-hole principle yields a Bp
containing two distinct elements k < j of B. By definition of B,, k|Jj.

Remark 1: It should be mentioned that the theorem is best possible, since for
lBl = m the conclusion does not hold: Choose, for example, B = 2m\m. It might
be an interesting question to ask how many sets B € 2m with |BI = m have the
property that any two elements k, j€B, k # j, satisfy k*j.

A problem similar to the one treated in Theorem 1 will be considered in

Theorem 2: For a positive integer m let 4 C {f : n€ 2m} with [A] = m+ 1. Then
there are f}, f;€4, k # j, such that (fi » fj) =1, :

P?"‘OOf-' Since (fx> fj) = f(x,;) (see [4]), it suffices to show that for B C 2m
with ]BI =m+ 1, there are k, j€B, k # j, such that (k, Jj) = 1. For rem,
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