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Introduction

Miles [5] defined the r-generalized Fibonacci numbers (r 2 2) as follows:

Up,p, =0 (n=-1, =2, =3, ...), (1a)

Up, o = L, (1b)
r

Up,p = 2 Up p-g (=1, 2,3, ...). (lc)
i=1

In such a way, for r = 2, we get the ordinary Fibonacci numbers. The object of
this paper is to present, in the first section, an elementary proof of the
convergence of the sequences of ratios

)
" _ Up, n
r,n -
Up,n-1 ne1

using neither the theory of difference equations nor the theory of continued
fractions. 1In the second section, we consider a geometric interpretation of
the r-generalized Fibonacci numbers that is a natural generalization of the
golden rectangle. Finally, in the third section, we consider electrical
schemes generating these numbers.

1. Convergence Results

For each r 2 2, we consider the sequence of ratios
tpon = Up, nllp,n-1 (=1, 2, 3, ...).

Rather than using the theory of difference equations to obtain a formula for
Uy, n and use it to prove the convergence of the sequence to the unique positive
root of the polynomial

p, (@) =z - Y a'""t (see [51),

i=1
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we present here a proof based on a fixed point argument using the way the u, ,
are generated.

Observe that Up, n > 0 for n 2 0. Hence, dividing (lc) by Up, n-1> We get
+ =14+ 3 Zran-t (n=1)
and, using the definition of tp, 4> We obtain

tpom = 1+ 2 =3 S n zr). (2)

i=2 th n-g
im1

From (1), we also have
Up,y = 2Up, o1 = Up, n-p-1 for m z 23
hence, dividing by Up, n-1> We obtain
1

tp,n =2~ m2r+1). (3)
n tr, n=1
i=
Now, since ¢, , 2 1 for n =1, ..., r, using (2) we have tp,, 21 for all n 2 1
and, using (3), we also have ¢, , < 2 for all n = 1.
Using (2) and (3) we can generate a sequence of upper bounds {B,, 2} - and
a sequence of lower bounds {byr, 4}, _, for t, , as follows. We have
1L =by g<tpn<Bprog=2 (n=z21)
and, assuming that b, ,_; and By, g - are known and such that
bp, -1 S tp,n < By, yo; for all m 2 r(2 - 1) + 1,
we generate br,ﬁ and By, o using (2) and (3) in such a way that
L 1
by, s 2: PR tpon €2 - ——— =8By, (4)
- S -1 By, -1

for all n =2 r8 + 1.
The problem is now related to the convergence of the sequences

{bp, 0¥ o and  {Bn ¢} _,

We consider the two functions

1
xz—l and F,(x) = 2 - e

fo(z) =1+ 2:

i=2
From (4), By, g = Fr(Byp, g-p) and by, 4, = fr(By, ¢-1); hence, the result we look
for will be obtained from the study of the two functions f,(-) and F,(°).

1

Lemma 1: Let » 2 2 and F,(x) = 2 - -
X

(a) The equation x = F,.(x) has two solutions in the interval (0, «). One
solution is 1 and the other, noted a,, is in the interval (1, 2).
(b) Let {xi}:=0 be a sequence defined by x;4; = Fn(x;) for ¢ =0, 1, 2,

(i) 1If xy € (1, a,), the sequence {xi}:=0 is strictly increasing and con-
verges to On.
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(i) If 2, € (ap, «), the sequence {xi}:=0 is strictly decreasing and con-
verges to Q.

Proof: 1f x € (0, »), then

+ 1
>0 and F''(x) = £££————l <
xr+1 xr+2

Fl'(x) = 0;

hence, F,(+) is a strictly increasing continuous concave function on (0, «).
Also

lim F, () = -», lim F,(x) = 2,

z+0F X+
F,(l) =1 and F'(l) = » > 1, then F,(x) < x on (0, 1) and there exists a real
number o, such that F.(x) > x on (l, a,) and F,(x) < x on (a,, ») (see Figure
1). The results follow from these observations. []

FIGURE 1. Graph of y = F,.(x)

Lemma 2: Let r» 2 2 and let

r
1
fo(@) =1+ ;gé T
The equation x = f,(x) has a unique solution B, in the interval (0, =). Also

By is the unique positive root of the polynomial

r
p,(x) = x” - > &t

=1
Proof: If x € (0, »), we have

G -1 <0 and fy(x) = fi ESE;ETLZ
; x

1=2

r
fl@ = -3 > 0;
=2

xi
therefore, f;(-) is a strictly decreasing continuous convex function on (0, «).
Also

lim f,(x) = 4+~ and lim f,(x) = 1 (see Figure 2).

z 0t > 4o
It follows that there exists a unique positive x such that x = f,(x). Also,
for x > 0, x = f,(x) is equivalent to
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x? = 55 xr—i
=1

and the result follows. [J

FIGURE 2. Graph of y = f,.(x)

Lemma 3: Let » > 2. For x =1, x = f,(x) is equivalent to x = F,(x), and it
follows that

B, = o, € (2(1 - %) z>.

Proof: g = F.(x) is equivalent to x"(x - 1) = x¥ - 1. Forxz =z 1, x = F.(x) is
equivalent to

r-1
x” =3y xt
=0
which is also equivalent to x = f,(x). Hence,

o0 = frlay) = £,(2) = 2(1 - Zi) 0

From Lemmas 1-3 we can conclude that i) the sequence {Br,g}zzo is strictly
decreasing and converges to a,, ii) the sequence {by, 3}, is strictly increas-

ing and converges to a,. Then, using (4), we have the following result.

Theorem 1: Let r > 2, u,, , given by (1), and

MP, n
Typ,n = — for n =2 1.
Up,n -1
The sequence {%,, 1}

.-1 converges to the unique positive root o, of the polyno~
mial

p,(x) = 2" - ﬁi:ﬁr"? 0

=1

We could call o, the r-generalized golden number; hence, we have the fol-
lowing result.

Theorem 2: The sequence of r-generalized golden numbers {ur}:=z is a strictly
increasing sequence converging to 2.
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Proof: Let 2 < r; < r,. We have Frl(x) < F,,Z(x) for all x € (1, »); Hence,
Op, = Fpl (0‘1/'1) < sz (Olrl)-

It follows that oy € (1, ar.). Then the sequence {ur}:=z is strictly increas-
ing and upper bounded by 2. It converges and we have

1
lim o, = lim<2 - —;) =2. O

r>owo r>w »

Remark 1: Somer [8] considered the proof of Theorem 2 based on continued frac-
tions.

Remark 2: We have shown that o, is the unique positive root of the polynomial

r
(x) = 2¥ - xr -
Py
=1

We can also easily observe that pr(x) has

(i) only one negative real root if »r is even,
(ii) no negative real root if » is odd,

because pr(x) = 0 is equivalent to
I'_
x? = g -1 for x < 0
x -1

(see Miles [5] for a complete study of the polynomial pr(x)).

Remark 3: We could consider that u,, ; are given positive real numbers for ¢ =
0, ..., » - 1 and that u,, , are generated using (lc) for n 2 r. In this way,
we could show that ¢, , 21 for n 2 r and tp,, < 2 for n 2 2r. More generally,
it follows that we could start with any given real numbers u, ; (¢ = 0, ...,
» — 1) and use the method described here to show

lim ¢, , = ap»
n>w

which is the positive root of pr(x), as soon as r successive values Up, ¢ of the
same sign appear.

2. A Geometric Interpretation

Let us consider the sequence of r-tuples {3p,n}:=0 generated by induction.
Let Dr 0= (Up, gs Up, 15 «oes “r,r—l) Assuming that ﬁr,j is already generated
for j =0, ..., n - 1, we generate vr,n as follows:

(i) determine the unique integers < and k such that n = 7 + kr, 0 < 2 < r
and k¥ > 0 [in other words, ¢ =1 + (» - 1) mod r],

(ii) the coordlnates of vr » are those of vr n-1 except for the 7 th coor-
dinate of vr , which is the sum of the » coordinates of UP n-1r

From this construction, we can show that the coordinates of Up,n are suc-—
cessively Uy ys Up, y 41> +-+> Up, n+pr-1 Where up ,i,_1is the 2th  coordinate,
and the sum of the coordinates of 5r n 18 Up, nyp-

To each Vr n We can associate the parallelepiped rectangle in R” having
this point as the vertex that is not on the axis. This construction for r > 2
is a natural generalization of what happens in the case r = 2. Figures 3 and 4
illustrate the cases r = 2 and r = 3, respectively.
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P, = (1, D
Dy = (2, 1) 8
Dy = (2, 3)
Dy3 = (5, 3)
Do = (55 8)
Dy5 = (13, 8) 3

1

[

FIGURE 3. Case r = 2

Dy = (1, 1, 2)

D3 = (4, 1, 2) '
2‘53,2 = (4, 7, 2)

D33 = (4, 7, 13)

Dy = (24, 7, 13)

N

v

w
ul
|

= (24, 44, 13)

2

ifl

F1]

FIGURE 4. Case r = 3

Normalizing the vectors ﬁr’n with respect to the uniform norm
serve that

, we ob-
o

>

N
Upr, 1 +k .
—=d, ; (=1, ..., 1)

koo ”zr, i+kr’“m

>
where dy,, ; is a unit vector, with respect to the uniform norm, having the coor-
dinates l/uﬂ"%, 1/@?"2, vy l/u%, 1/0,, 1, ang_such that 1 is the 4th coor-
dinate. Figures 5 and 6 illustrate the vectors dr,i (2 =1, «ve., ) for r = 2
and r = 3, respectively.

a, = 1.618034... - ;

(1, 1/ay) -

Qv Qv
»
-

FIGURE 5. Case r = 2
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Oy = 1.8392868...

e 2

53’1 = (1, 1/ag, l/ay)
- 2

ia)z = (l/asy ]-9 1/0(43)

d3’3 = (1/u%, l/us, 1)

FIGURE 6. Case r = 3

Moreover, the volume V of the parallelepiped generated by the vectors Er,l,
dy 95 wevs dp,p is
> > 1\r-1
Vr=det(dy,’1, ceey dr’,r)=(1_—r> .

Ay

Since lim o, = 2, it follows that 1im V, = 1.
7> to >

We can present an informal interpretation of the last result. If we consi-
der coordinatewise convergence, we can define for the sequence {dy, ;},..; the
limit

> - 3 .
d, ,=1limd, ;, = (217%, 227%, ..., 272, 271, 1, 0, 0, ...)
r> oo

which is a vector in the infinite-dimensional euclidean space R” (or the set of
infinite sequences). Hence, the semi~infinite determinant

> >
V, = det(d., ;> dw’z, v..) = 1lim 7,
r>ow
is triangular and has 1's along the diagonal, so V, = 1.

3. Electrical Schemes

It is well known that we can generate the sequence

{MZ, n+ l}w

uZ,” n=0

using electrical circuits (see [1], [2], [3], [4], [6], [7]). Recently, Beran
[2] wondered if it was also possible for the sequence

{“3,n+1}°°
u3,n n=0

We present here one method to generate the sequence

{MP, n+l}m
Up,n Jp=0

using electrical circuits.
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Let us define the resistances

r o _ Upr, j+1
Js 7 Up, §

for j 2 0 and 7 2 -j. Hence defined, connecting in series » successive resis-
tances

r
Q) vk k=0, ..., 7 -1)
we obtain the resistance next to the last one Q; 4y because
r-1

r _ r
Qj,i+r - E:&%,i+k'

Also, connecting in parallel r successive resistances

Q;+k,i (k =0, ..., » - 1)

we obtain again the resistance next to the last one Q
or = ____&_g_____
J+r, 1 r-1 ’

/9% 2 s
kz% J+k, 1

z because
j+r, i

Using these observations, we can generate a sequence of sets {5§}:=0, where
S; is the set of resistances having values Qi,i for 2= -, -» +1, ..., -1, 0,
1, ..., » =1, r. The process is by induction.

For n = 0, we have:
(i) Qg,i =0 for i = -r, ..., -1}
(i) Qp o = 1;

z
(iii) Qg ;= 2 Qp ;. for < =1, ..., 7.
, o o,

0

. . . r .
Assuming that the resistances in the sets SO’ Sf, Sr, s S:_l are avail-
able, we can generate the resistances in the set S; as follows:

1

(i) for 7 = -r, ..., -1, we have Qi’. = a0
r

2 Wan-j,5+1

J=1

r .
and Q;—j,j+iesﬂ—j fOI‘J = l, ey I

(in these expressions we do not consider a term for which the index j is such
that n = § < 0). Then the resistance Qz,i can be constructed if we use the
already constructed resistances and connect them in parallel.

(ii) 9,, = 1.

r
(iii) for ¢ = 1, ..., », we have 2 ; = 3 ®

r

where Qn,i—j €.S; for g =1, ..., r.

These resistances are already known and can be connected in series to obtain
the desired resistance.

1f we consider the rational resistances hence built, in each set S; their
smallest common denominator is u, , if we start with u, 4, ..., uUp, p-; having
no common factor, i.e., (up,o, Up, 15 ooes Up, p-1) = 1. Then, if we write these
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rational numbers using their common denominator u
r
sequence {uy,, ,4:}

r, e the numerators form the
s

i=-r°
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NOTE ON A FAMILY OF FIBONACCI-LIKE SEQUENCES

John C. Turner

University of Waikato, Hamilton, New Zealand
(Submitted May 1987)

In [2] P. Asveld gave a solution to the recurrence relation

k .
G, = Gy_1 +G,_p + 2 oyn? with Gy = G = 1. (1)

n n-1 n-
J=0

In [2] we showed that the solution to the recurrence relation

G, =G,y +G,_, +5,, G =85, G =5 +5,, (2)
where S, is the nth term of any sequence {S,} = S, is given by the nth term of
the convolution of the Fibonacci sequence F with the sequence S. That is, the

solution of (2) can be expressed as
Gy = (F % 5),,

using * to mean convolution.

This note shows how Asveld's family can be dealt with by the convolution
technique, using generating functions. Although we do not work through the de-
tails in the note, it is clear that a comparison of the two final solutions
would yield interesting identities relating Asveld's tabulated polynomials and
coefficients, and the coefficients from our solution.
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