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Recently,* D. H. Lehmer posed the following problem:
If ¢, is the coefficient of x” in (1 + x + x2)", then show that
2" is the determinant of the matrix
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He noted that the generating function for the ¢,'s is
(1 -2z -322)"Y2 =1 + 2+ 322 + 723 + 192" + ...

One might equally ask about the value of the same determinant where the
¢,'s are the coefficients of x” in (a + bx + cx?)"® [note that these ¢,'s have
generating function (1 - 2bx + dx?) ~1/2, where d = b? - 4ac]; or perhaps where
the ¢,'s are the coefficients of z"*” in (a + bx + cx?)" for some fixed integer
r.

As an example, consider the case where the ¢,'s are the coefficients of
2" 7 4in (1 + 2z + £2)" = (1 + 2)2", that is,

Sl

n n+ rl°

There does not seem to be an immediate combinatorial argument for finding the
determinant even in this case.

In this paper we will answer all of these questions in a very simple way,
by easy manipulations of the defining polynomials of the ¢,'s. We make the
following definitions:

Let S be the set of sequences of polynomials F = [F,(x)],s>¢9 such that each
F,(x) has degree less than or equal to 27, and such that F,(x)/x" is symmetric
(about 20y, [Clearly F, (x) = (1 + x + xz)" and F,(x) = (1 + 2)2" are examples
of such sequences.] We define the "elementary sequence' of S to be

T = [5,(® ],

where Ig(x) = 1 and I, (x) = 22" + 1 for each n > 1.
Suppose F, G € 5 and r is a fixed integer. For each integer n 2= 0, let
A,(F, G) be the (n + 1) by (n + 1) matrix with (£, F)™ entry

Fy (@) /x® e G;(x)/x? (for 0 <1, § <mn).

For any matrix 4 with entries in Z[z], we define ¢,(4) to be the matrix
formed from 4 by replacing each entry with the coefficient of x”. We let D,(4)
be the determinant of ¢,(4).

*At the Western Number Theory Conference in Asilomar, December, 1985.
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Finally, we let B,(F) be the (n + 1) by (n + 1) matrix with (Z, §)" entry
(0 <1, jJ £n), where

b

i, d
. i . .
Fy(x)/z* = b; *’;;ibi,j(xJ + x79).

We will see that the value D,[4,(F, G)] is easily computed in terms of the de-
terminants of B, (F), B,(G), and D,[4,(I, I)].

Lemma 1: Suppose that A4, U, and V are n x »n matrices, where A has entries from
C[x] and U and V from C. Then, for any integer r,
e, (UAV) = Ue,(4)V.
The proof of this lemma follows immediately from the observation that, if
a(x), b(x) € C[x] and a, B € €, then o times the coefficient of x? in a(x) plus

B times the coefficient of x” in b(x) equals the coefficient of x” in aa(x) +

Bb(x) .
We also make the following trivial observation

Lemma 2: 1If F, G € S, then for any positive integer n,
Ay (F, G) = By (F)An(I, I)B,(&)T.

Combining Lemmas 1 and 2, we observe
Corollary 1: If F, G € S and r is a given integer, then

DplAy(Fs )] = DplAy(I, I)] « Det[Bp(F)] + Det[B,(G)].

Observing that, by definition, B, (F) is a lower triangular matrix with diagonal
entries F,(0), 0 < m £ n, we have

n
Lemma 3: If F € S, then Det[B,(F)] = [I F,(0).
m=0

We now compute the values of D,[4,(I, I)].

Lemma 4: For integers r and n with n > 0, we have
2" if » =0
D,[A, (I, I)]1=<(-1) [(n+1)/2] " if p # O and 2r divides n + 1 or n + r,
0 otherwise.
Proof: erl4n(I, I)] has (<, J)th entry equal to the coefficient of x* in (x% +
x~*) (29 + x79) for 2, j =2 1. Thus,
epldn(I, D] = copl4n(I, D],

so we will assume henceforth that r» > 0. Now, if r = 0,

1 i=4=0,
[CO(An(I’ I))]’L,J = 2 i = j > 0’
0 otherwise,

and so it is clear that Dy[4,(I, I)] = 2".
Let X = ¢,[4,(I, I)] and D, = D,[4,(I, I)]. For r 2 0,
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1 1+ g = r,
(X)i,j = <1 |2 -4l r,

0 otherwise.

We will prove the result for fixed » by induction on n.
Now if 0 < m < »r - 1, then all entries of the top row of X are zero, and so

Dy =0. If n=7r, then ¥ has ones on the reverse diagonal and zeros every-
where else, so that

D, = (-1) [(n+1}/2]

For » + 1 < n < 2r - 2, observe that the r - 15t and r + 15% rows of X are both
(0, 1, 0, ..., 0) so that D, = 0.

Now let X, be the 2» by 2» matrix with r x » block structure

Or | Iy
In | O
so that Det X, = (-1)7".
If n = 2r — 1, then the 2™ row of x has all zero entries except for omnes
in columns » — 7 and » + 7 if © < » - 1, and in column 7 - » if 7 > ». We sub-

tract row » + ¢ from row » - ¢ for 7 =1, 2, ..., r -~ 1, which are all determi-
nant-preserving operations and get the matrix K,. Thus,

D, = Det K, = (-1)(n+1)/2,
Now suppose n = 2r. If 7 2#n - » + 1, then row ¢ has just one nonzero entry
(in column j = 7 - r) and so we can subtract this row from all other rows with
entries in the (£ - r)™ column. (This is clearly a determinant-preserving

operation.) We perform the same action for each column j, with j 2n - r + 1
and we are left with the matrix

[ g ,; }, where ¥ = ¢, [4,.0,(I, I)].
r

Thus,
D =D

n n-2r

Det K, = (-Dln-2r+1)/21(_1)7 = (-1 [(n+1)/2]

by the induction hypothesis.
So by combining Corollary 1 with Lemmas 3 and 4, we may state the main

Theorem: 1f F, G € 5 and A is the (n + 1) by (n + 1) matrix whose (7, J)th en-
try is the coefficient of z**J*" in F; (x) * G;(x), then the determinant of A

equals o if » =0,

n
[ I1 Fm(O)Gm<0)]_ (- +1/21 4f p» 2 0 and 2 divides n + 1
n=0

. or n + r
0 otherwise. ’

Some consequences are

Corollary 2: The determinant of M, with ¢, equal to the coefficient of x” in
(I + 2+ x2)" is 27,

Proof: Take F,(x) = G,(x) = (I + £ + %)™ in the Theorem.

Corollary 3: The determinant of M, with ¢, = Ll%?ll is:
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2n if » = 0,
(-1 +1)/2]1 if » # 0 and 2r divides n + 1 or n + r,

0 otherwise.
Proof: Take F, (x) = Gu(z) = (1 + x)2m in the Theorem.
We make an interesting combinatorial observation in

Corollary 4: I1f ¢, is the coefficient of x” in (1 + tx + x2)" , then the value
of the determinant of M, is independent of .

Proof: Take F,(x) = G,(x) = (L + tx + x2)™ in the Theorem and observe that each
F,(0) is independent of ¢.

Corollary 5: The determinant of M, with ¢, equal to the coefficient of x”*” in
(a + bx + cx?2)" (with a, b, ¢ = 0) is:

2" if » = 0,

mergnarya1)/2 ) leD)/2]

(a if » 2 0 and 2" divides n + 1 or n + »,

0 otherwise.

Proof: Let 6 = (ac)V2, x = O0y/c, so that ¢, is the coefficient of
en+ryn+r

c?’l‘i’!’

in a™[1 + (b/®)y + y2]". Let dn be the coefficient of y"*” in [l + (B /8)y +
y2]" so that ¢, = (a""ren*™)1/24, . Then

CyCy e+ Cp

dody .- d

1 ” 1
?lcz s Cunl| = (o/a)?/2 6 02 0 ?1d2 cee doy 6 02 0 ,
. 0 *e 67! . 0 * . en
Cp  eee Coy d, ... dy,

and so the result follows immediately from Corollaries 3 and 4.
Corollary 6: The Legendre polynomials [P, (t)],,, are defined by

(1 - 2tx + x2) 712 = 5 P, (t)a™.

nz0
By taking ¢, = P,(t), the determinant of ¥, is

(=) ()
: .
Proof: Use Corollary 5 with b = ¢ and b2 - 4ac = 1.

Clearly, this technique of computing this class of determinants may be gen-
eralized to a number of different questions. The real keys to the method are
that (1, x + 271, 22 + =2, ...) form an additive basis for Z[x + xz~1] over Z;
and that the action of taking the coefficients of x? of the entries of a matrix
of polynomials, commutes with multiplication by matrices with entries in
(i.e., Lemma 1).
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