CHARACTERIZATIONS AND EXTENDIBILITY OF P_t -SETS

Vamsi Krishna Mootha (student)

Msgr. Kelly High School, Beaumont, TX 77707

George Berzsenyi

Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (Submitted December 1988)

Let t be a nonzero integer and S be a set of three or more integers. We will say that S is a P_t -set if, for any two distinct elements x and y of S, the integer xy + t is a perfect square. A P_t -set S will be termed extendible if, for some integer d, $d \notin S$, the set $S \cup \{d\}$ is a P_t -set.

The purpose of this paper is to characterize certain families of P_t -sets, and to show that some of these are not extendible. In particular, the result of Thamotherampillai [1], that the P_2 -set $\{1,\ 2,\ 7\}$ is not extendible, will be obtained as an easy corollary.

To simplify the exposition, throughout this paper statements of congruences are to be interpreted modulo 4; i.e., $x \equiv y$ will mean $x \equiv y \pmod{4}$.

Lemma: If S is a P_t -set and α , b, $c \in S$, then none of the numbers

$$a(c - b), b(c - a), c(b - a)$$

is congruent to 2, modulo 4.

Proof: By the definition of P_t -sets, we have

$$ab + t = x^2$$
, $ac + t = y^2$, $bc + t = z^2$

for some integers x, y, and z. Upon eliminating t among the equations above, the result follows from the fact that perfect squares are congruent to 0 or 1, modulo 4.

Theorem 1: If all of the elements of a P_t -set are odd, then they are congruent to one another, modulo 4.

Proof: Let S be a P_t -set, and α , b, $c \in S$. Observe that, if $\alpha \equiv b \equiv 1$ and $c \equiv 3$, then $\alpha(c - b) \equiv 2$; while if $\alpha \equiv 1$ and $b \equiv c \equiv 3$, then $b(c - a) \equiv 2$. Both of these conclusions are impossible in view of the Lemma; hence, either $\alpha \equiv b \equiv c \equiv 1$ or $\alpha \equiv b \equiv c \equiv 3$.

Theorem 2: If only one of the elements of a P_t -set is odd, then all of the others are congruent to 0, modulo 4.

Proof: Let S be a P_t -set, and α , b, $c \in S$. Observe that, if $\alpha \equiv 1$, $b \equiv 2$, and $c \equiv 0$ or if $\alpha \equiv 3$, $b \equiv 2$, $c \equiv 0$, then $\alpha(c - b) \equiv 2$; while if $\alpha \equiv 1$ and $b \equiv c \equiv 2$ or if $\alpha \equiv 3$ and $b \equiv c \equiv 2$, then $c(b - \alpha) \equiv 2$. Both of these conclusions are impossible in view of the Lemma; hence, if $\alpha \equiv 1$ or 3, then $b \equiv c \equiv 0$.

Theorem 3: P_t -sets of the form $\{4k+1, 4m+2, 4n+3\}$ are not extendible.

Proof: Assume that $\{4k+1, 4m+2, 4n+3, d\}$ is a P_t -set. If d is odd, then $\{4k+1,\ 4n+3,\ d\}$ is a P_t -set all of whose elements are odd. However, 4k+1 $\not\equiv$ 4n + 3, contrary to Theorem 1. If d is even, then $\{4k + 1, 4m + 2, d\}$ is a P_t -set with only one odd element, 4k + 1. But $4m + 2 \not\equiv 0$, contrary to Theorem 2. Consequently, such d cannot exist.

Corollary: The P_2 -set $\{1, 2, 7\}$ is not extendible.

At this point, the authors wish to express their appreciation to Bud Brown, who sent them a copy of [2] upon reading [3], and hence called their attention to [1]. It may also be noted that Thamotherampillai's proof of the corollary is much more complicated, and its method does not allow for generalizations.

In conclusion, we provide a table of examples which shows that all of the cases not disallowed by Theorems 1 and 2 are indeed possible. In the "congruence type" column, the members of $\mathcal S$ are reduced modulo 4 to allow for a quick review; thus, for example, the P_{97} -set {3, 8, 24} is type [3,0,0] since 3 \equiv 3 and 8 \equiv 24 \equiv 0. In this terminology, P_t -sets of types [1,1,3] and [1,3,3] do not exist in view of Theorem 1, P_t -sets of types [1,2,2], [1,2,0], [3,2,2], and [3,2,0] do not exist in view of Theorem 2; and P_t -sets of type [1,2,3] are not extendible in view of Theorem 3.

	_		
Table	of	Examples	3

Congruence type	S	t
[1,1,1]	$\{1,5,33\}$	31
[3, 3, 3]	{7,11,23}	323
[1,0,0]	$\{5,8,16\}$	41
[3,0,0]	{3,8,24}	97
[0, 0, 0]	{4,12,32}	16
[2, 0, 0]	{2,12,420}	1
[2, 2, 0]	{2,6,16}	4

Congruence type	S	t
[2,2,2]	{2,10,22}	5
[1,1,0]	{1,9,20}	16
[1,1,2]	{1,5,10}	-1
[1,3,0]	{1,7,16}	9
[1,3,2]	{1,79,98}	2
[3,3,0]	{3,27,60}	144
[3,3,2]	${3,7,2}$	-5

References

- "The Set of Numbers {1, 2, 7}." Bull. Calcutta 1. N. Thamotherampillai.
- Math. Society 72 (1980):195-197. Ezra Brown. "Sets in Which xy + k is Always Square." Math. Comp. 45.172 (1985):613-620.
- "Problems, Puzzles and Paradoxes: Discoveries." Consortium G. Berzsenyi. No. 25 (March 1988):5.
