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1. Introduction

As far as is known tc this author, the term "Quasi-Orthogonality'" was first
introduced by K. S. Miller in [1]:

Given two sets of numbers A(m, n) and B(m, n) such that m, n, s € Z, and
A(m, n), B(@m, n) =0 for n < 0, m < 0, and »n < m, they are said to be quasi-
orthogonal to each other if

55 A(s, n)B(m, 8) = 8§(m, n) (1)

where §(m, n) is the Kronecker delta.

Equivalently, we can say that if A(n) is the square, and triangular matrix
of elements A(m, n) of n rows, and B(n) the square and triangular matrix of
elements B(m, n) of n rows, then

A(n)B(n) = I, (2)
i.e., the two matrices are inverse of each other.

H. W. Gould has compared the different aspects of quasi-orthogonality and
studied some of its properties [2].

In this paper we shall be concerned with the so-called BILINEARLY RECURRENT
orthogonal numbers, i.e., numbers satisfying recurrence relations of the form:

A(m, n) fﬁmvﬂ“m—l,n—l)+fﬂm,MAw,n—lh (3)
B(m, n) = fa(m, n)B(m - 1, n - 1) + f,(m, n)B(m, n - 1). (4)
The problem to solve is the following: knowing f; and f,, find f3 and f,

or, since the problem is symmetric, knowing f; and f,, find f, and f,.
So far, only the following cases have been studied:

Case 1: f, = N(n), fo = M),

fs = 1/[N(m + 1)], fi = -M(m + D/[Nm+ 1)]. cf. [3].
Case 2: fl = P(m), f2 = Kn) + M(m + 1),
fy= 1/P(n), fiy = -[&Km+ 1) + M@n)1/P(n). Cf. [3].

Other cases of quasi-orthogonal numbers have been studied but they are not
of the bilinearly recurrent kind.

The final aim is to obtain a general case where the functions f; are all of
the form f; (m, n). This result has thus far been impossible to reach.

In this paper we study

Case 3: f,(m, n) = a(m)B(n), f,(m, n) = n(n),
F3lms n) = 1/a(n)g(m), f,(m, n) = -n(m + 1)/a()B(m + 1).
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2. P-Polynomials and A-Numbers

Let J be the set of positive numbers and zero, i.e., J= [0, Z*]. We assume
that m, n, k, s € J, and that a(m, n), b(m), and ¢(m) are defined, and not equal

to zero, also that x > 0.
Consider the polynomial

P(n, x) = ié a(m, n)A(m, n)x™ =kfil[b(k) + c(R)x],

m=0
so that
n+1
P(n+ 1, ) =3 alm, n+ DA, n + 1z
m=0
n+

I]l[b(k) +ce(k)x] = [b(n + 1) + en + x]P(n, x)
1

= [b(n + 1) + c(n + Dal 3, alm, n)A(m, n)x™.

m=0

m+l  we obtain

By comparing the coefficients of x
am+ 1, n+ DAm+ 1, n+ 1) =cn + Lalm, n)Alm, n)
+ b(n + Dalm + 1, n)A(m + 1, n)
or, since a(m+ 1, n + 1) = 0,

_ a(m, n)
Am+ 1, n+ 1) =cn + l)a(m T L oar D A(m, n)

alm + 1, n)
+ b(n + l)a(m T A+ D Alm + 1, n),

or again,

Ay 7)) = o@D ey o
a(m, n)
+ b(n)gimi_ﬁ_:_ll4A(m’ no-1).
a(m, n)

This is the recurrence relation for the numbers A(m, n).

3. B-Numbers

We express x” in terms of P-polynomials as defined in Section 2, thus

1

x” A(s, n)B(s, n)P(s, x)

2
s=0
2 A(s, n)B(s, n) [ Y a(m, 8)A(m, s)xm],
s§=0

m=0

(5)

(6)

(7

(8)

where the numbers A(s, n) are defined, and different from zero, for s, n € J,

and B(s, n) satisfy the conditions of Section 1.
It follows that

S
" > A(s, n)a(m, s)B(s, n)A(m, s)x™
=)

s=m

2
s§=0
> xm| 3 A(s, m)a(m, s)B(s, n)A(m, s)],
m=0

1989]

(9
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which shows that the quantity in brackets, i.e., the coefficient of ™ must be
equal to 6;.

To assure the quasi-orthogonality of the numbers A(m, s) and B(s, n) it is
necessary to assume that

X(s, n)a@m, s) = 1. (10)
This result can be obtained in the following way:
For m = n, we take A(s, n)a(n, s) =1, i.e., A(s, n) = 1/a(n, 8).
For m # n, i.e., for m < n, it is necessary to write
a(m, s) = a;(ma,(s), r(s, n) = r;(8)r,(n),
with X, (s) = 1/a2(8), so that
A(s, n)a(m, &) = A, (n)a;(m),

which, substituted into (9), gives

rxo
2<n)a1<m)xml>: B(s, n)A(m, s)} (92)

s§=m

8
3
1]

o (m)ay (mx™sy,

n

S
m=0
n

ST A
m=10
which is satisfied if A,(n) = llal(n).

We summarize this result by writing

A(s, n) = [l/az(s)])\z(n):
or
}\(3, TZ) = ],/CZ(?’L, 3) = l/al(n)az(s)'
Under these conditions, clearly (9) can be written as
n
z" = Y z"sy (11)
m=0
and
n
Y B(s, n)A(m, s) = &}. (12)
s=m
On the other hand,
n
"l = ghe g = [ S A(s, n)B(s, n)P(s, x)}x. (12a)
s=0
Since, according to (6),
P(s+ 1, x) = [b(s + 1 + c(s + 1)x]P(s, n), (13)
it follows that
xP(s, ) = [P(s + 1, x) = b(s + 1)P(s, x)]/c(s + 1) (14)

so that, substituting into (12a), we obtain

ntl _ % P(s +1, @  b(s +1)
x Sg%)k(s, n)B(s, n)[ e+ D) G T D P(s, x) (15)
n+1
= 3 Ms, n+ 1)B(s, n + 1)P(s, ).
§=0
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Comparing the coefficients of P(s + 1, x), we see that

r(s, n)

M + 1, n+ 1)B(s+1, n+ 1) =mB(s, 7) (16)
e + 1, n)b(s + 2)
- c(s + 2) Bls + 1, n)
or .
B(s + 1, n+ 1) = Mo, n) B(s, n) (17)

AMe + 1, n+ De(s + 1)

As + 1, m)b(s + 2)
T+ 1, n+ Des + 2) B(s + 1, n),

or again,
Ms -1, n-1) _ _
B(s, n) = 6. e B (s 1, n 1) (18)

A, n - Db + 1)
B A(s, M)e(s + 1) Bl,n - 1.

Equation (18) is a first form of the recurrence relation for the B-numbers.

4. Evaluation of a(m, n)

According to (4) and (7), we can write:

a(m - 1, n — 1)

e(n) Py — = fi(m, n); 19
a(m, n - 1)
b(ﬂ)—m = fz(m, n). (20)

From (20), we deduce
bn)aim, n - 1) = fz(m, n)a(m, n)
b(n - Da(m, n - 2) = f,m, n - Lalm, n - 1)
b(n - 2)a(m, n - 3) = folmy n = 2)a(m, n - 2)

b(2)a(m, 1) = f,(ms 2)a(m, 2)
and multiplying through and simplifying,

L]

{ﬁ b(k)]a(m, 1) = a(m, [ I £,0m k)]
k=2 k=2

or
n bk) 1
- B AT 21
a(m, n) = a(m, l)[krzlz 75 G, k)J 2n
and .
am -1, n -1 =alm-1, 1) [kl:lzb(k)/fz(m -1, k):]. 22)
Substituting (21) and (22) into (19), we obtain
n-1
e(m)aim - 1, l)[kl:lzb(k)/fz(m -1, k)]
19891
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= a(m, 1) [kljzb(k)/fz(m, k)]fl(m, n)

which, after simplification, gives

a(m, 1) = alm - 1, )[e®n)/bn)]

n-1
[kr_lz Folms KY/Fy(m = 1, k)] [f, (s w)/F) (s 7)) (23)

or
a(m, 1) =alm -1, 1)a@m), (24)

since the left-hand member of (23) is independent of n, i.e.,
n-1
Q@m) = [c(n)/b(n)][;ljzfz(m, K)Ifolm = 1, k)][fz(m, n)/fyGm, n)]. (25)

To eliminate » in the right-hand member of (25), we assume that
fiGm, n) = a(m)B(n), and Folmy n) = S(m)n(n).
Equation (25) can then be written as
Q@m) = [e(m)/bm) 118G /66 -~ 1)1 2[8(mn () /a(m)B(n)].

In order to have the right-hand side independent of »n, it is necessary to
assume that

le(m)/b(m)][n(n)/B(n)] = A = Const., (26)
and

S(m)/S(m = 1) =1, (27)
i.e., 8{(m) = B = Const. We may also assume that 4 = B = 1, i.e.,

folms n) = f,(n) = n(n, (28)

le()/b(m)IIn(m)/8(n)] = 1. (29)

It follows that Q(m) = 1/a(m) and, returning to (24), we can write

a(m, 1) = a(m - 1)/oa(m)
alm - 1, 1) = a(m - 2)/oa(m - 1)
alm - 2, 1) =a(m - 3)/oa(m - 2)
a(2, 1) = a(l, 1)/a(2),

and multiplying through, we obtain

almy 1) = a(l, 1)[ I l/oc(j)]. (30)
=2

Substituting (30) into (21), we obtain

n m 1 n b(k)
3 = ) > = 3 N T e 31
a(m, n) a(m l)k[gb(k)/fz(m k) a(l 1)j£¥ o AL v (31)

In the following examples we shall show how the results so obtained can be
used to solve the proposed problem.
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5. Example I

Given A(m + 1, n + 1) = mmd(m, n) + A(m + 1, n), which we rewrite in the
form of (4),

A(m, n) = (m - 1D)(n - DA(n - 1, n ~-1) + 4(m, n - 1),

so that fl =(m-1)n-1), 1.e., a(m) =m -1, B(n) =n - 1, fz =nn) = 1.
Equation (26) gives

c(n)/b(n) = Bn)/n(n) =n -1,
and from (31) we obtain, with a(l, 1) =1,

1 f:[zb(k) = X(?’Z)/(m - D!y X(n) =kﬁ b(k).

alms ) :ngzj -1y =2

From (10), it follows that, since A(s, n)a(m, 8) = 1,
A, n) = n - 1)/X(s).
From (18), we obtain
F3 =26 -1, n-1)/xs, nic(s)
=[(m-2)1/x( - DIX)/(m - Dlcle)].
As we have shown in this example, e¢(n)/b(n) =n - 1, so ec(n) = (n - 1)b(n) and

f3 =1/(n - 1)(s - 1). Again, from (18), we obtain fL+ = -1/s(n - 1). It fol-
lows that the B-numbers satisfy the relation

B(s, n)y = [1/(n - 1)(s - DIB(s =1, n~-1) - [1/(n - 1)s]B(s, n - 1).
For A(1, 1) = B(l, 1) = 1, we present a table of the A- and B-numbers:

Alms n) B(m, n)
n |1 2 3 4 5 1 2 3 4 5
1|1 )
2 |11 4 1
301 3 4 % -% %
4 |1 6 22 36 _% _2l4 _% 3%
5 |1 10 70 300 576 = _ESZ 1‘3‘;—8 e 5_;’6

6. Evaluation of f3 and f,

As we have seen in Section 4, it is necessary to assume that
Filmy m) = a(mp(n) and f,(m, n) = n(n).

From (31), a(m, n), and (10) and its consequences, it follows that A (s, n) =
1/a(n, s). Thus

A, n) = [jﬁzuu)][kli n(k)/b(k)]. (32)
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Then it follows from (18) that

F3(s, n) = a(s = 1, n - 1)/A(s, n)e(s) = 1/a(n)B(s) (33)
fulss m) = =x(s, n = 1)b(s + 1)/2x(s, n)e(s + 1)
= -n(s + D/am)B(s + 1). (34)

The results of Example I can be checked easily using (33) and (34).

7. Example II

Given

2
Mm+l,n+l)=%;Am,n)+Am+1,nL

We rewrite this in the form of (3), i.e.,

AGm, n) = [(n - 1D2/(m - D1AGm - 1, n - 1) + A@m, n - 1).

It follows that

fr0m, n) = a(mg®) = (n - D2/(m - 1),
fz =1,
falmy n) = (n = 1)/(m - 1),
and fu(my n) = -(n = 1)/m?,
so that
B(m, n) = [(n = D/(m - D*IBm - 1, n - 1) = [(n = 1)/m*1B(m, n - 1).
For A(l, 1) = 1, we give here the values of the A- and B-numbers for m, »n
< 5.
A(m, n) B(m, n)
" m |1 2 3 4 5 1 2 3 4 5
1 1 1
2 1 1 -1 1
5 1
3 1 5 2 2 -5 >
49 63 49 1
4 1 14 - 6 -6 Ky YA 6
273 410 255 1897 205 1
> L 30 = 3 2% | % T Lie T216 74
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