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PROBLEMS PROPOSED IN THIS ISSUE 

H-435 Proposed by Ratko Tosic, University of Novi Sad, Yugoslavia 

(a) Prove that, for n > 1, 

F 4- y 1 F F F F 

• , . l<k<n 
\n- 1 

fJ In + 1 \ * 

where [x\ is the greatest integer < x. 

(b) Prove that, for n > 3, 

\n-kr- F; , F. V (-])n~KF F • • ^ . 
n . L> . K LJ n- 1- ik

L ik- i^-\ "'' ^2~ i\ i\ - 2 
Q< %x< . . . < v k < n K K K i 

l<k<n 

= Fn + 3 + (-D"+ 1F„.3. 
(Comment: The identity is valid for n > 0, if we define 

F_3 = 2, F_2 = -1; F. = F,_} + F-_2, for i > -1.) 

H-436 Proposed by Piero Filipponi, Rome, Italy 

For p an a r b i t r a r y prime number, i t i s known t h a t 

(p - 1)1 E p - 1 (mod p ) , (p - 2 ) ! = 1 (mod p ) , 
and 

(p - 3)1 E (p - l ) / 2 (mod p ) . 

Let kQ be the smallest value of an integer k for which kl > p. 
The numerical evidence turning out from computer experiments suggests that 

the probability that, for k varying within the interval [kQ, p - 3], kl reduced 
modulo p is either even or odd is 1/2. Can this conjecture be proved? 
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SOLUTIONS 

I n t e g r a t e Your R e s u l t s 

H-410 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol. 25, no. 2, May 1937) 

Define the F ibonacc i polynomials by 

FQ(x) = 0, F1(x) = 1, Fn(x) = xFn_1(x) + Fn_2(x), fo r n > 2 . 

Prove or disprove that, for n ^ 1, 

j Fn(x)dx = ~(Ln - (-1)^ - 1). 
Jo n 

Solution by Paul Bruckman, (formerly) Fair Oaks, CA 

The conjecture is true. 

Proof: The characteristic equation of the Fn(x) is given by: 

(1) z1 - xz - 1 = 0, 

which has solutions 

(2) u = u(x) = % 0 + 0) , v = v(x) = % (x - 0) , 

where 0 E 0(x) = (x2 + 4)^ = u - V. 

From the initial conditions on the F (x) 9 we readily find: 

un - vn 

(3) Fn(x) = , n = 0, 1, 25 ... . 
U - V 

Also, we define Ln(x) as follows: 

(4) £„(*) = wn + Vn, n = 0, 1, 2, ... . 

We may differentiate the quantities in (2) with respect to x; denoting such 
derivatives by prime symbols, we readily obtain: 

(5) 0' = x/Q; ur = u/Q;. v! = -v/Q. 

From (4) and (5), we find: 

L'n(x) = nun~l • u/Q -• nvn~l • y/0 = n(un - z;n)/0, 
or 

(6) Z^(x) = nFn(x). 

It follows from (6) that 

I i n̂(x)dx = Ln(x)/n\ 5 or 
Jo Jo 

(7) J J?n(a;)<£c = ̂ (^(1) - Ln (0)), n = 1, 2, . . . . 
J o n 

Now 0(1) = 5^, so w(l) = a, y(l) = 3 (the usual Fibonacci constants), and Ln(l) 
= Ln. Also, 0(0) = 2, so w(0) = 1, V(0) = -1, and L(0) = 1 + (~l)n. Thus, 

(8) j Fn(x)dx = h l n - 1 - (-l)n), n = 1, 2, ... . Q.E.D. 
Jo n 
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Also solved by O. Brugia & P. Filipponi, C. Georghiou, L. Kuipers, J.-Z. Lee 
& J.-S. Lee, B. Prielipp, and the proposer. 

Close R a n k s 

H-411 Proposed by Paul S. Bruckman, Fair Oaks, CA 
(Vol. 25, no. 2, May 1987) 

Define t he s imple cont inued f r a c t i o n 6 ( a , d) as f o l l o w s : 

0 ( a , d) = [ a , a + d, a + 2a7, a + 3d, . . . ] , a and d r e a l , d * 0 . 

Find a c losed form for 6 ( a , J ) . 

Solution by C. Georghiou, University of Patras, Patras, Greece 

Take the d i f f e r e n t i a l equa t ion 

(*) zw,! + bw! - w = 0. 

Then, for b * 0, - 1 , - 2 , . . . , we have 
w 1 z 

— = b + 

By differentiating (*), we get 

wf * 
— = b + 1 + w" w"/wm 

and by repeated differentiation of (*), we get the continued fraction 

w z 
(**) f(z) = — = b + 

w b + 1 + 
b + 2 + 

2? + 3 + 

Now it is shown in W. B. Jones & W. J. Thron, Continued Fractions (New York: 
Addison-Wesley, 1980), pp. 209-210, that the above continued fraction converges 
to the meromorphic function 

bQFl(b; z) 
f(z) = F^b-h 1; z) 0 

for all complex numbers z and, moreover, the convergence is uniform on every 
compact subset of I that contains no poles of f(z). 

From the theory of continued fractions, we know that 
aY a2 a3 a ^ clc2a1 c2c3a3 

On + T— , T— , T— , - On + 0 2?i + b2 + b3 + . . . 0" Clbl + e2b2 + ^3^3 + ••• 
Where cn * 0. Then, if we take b = aid and z = 1/d2 in (**) and use the above 
identity, we find 

anF}{a/d); l/d2) 
6(a, d) = —^ 

^(a/d + 1; l/d?-) 
valid for a/d * 0, -1, -2, ... and d * 0. Since 

0^(£ + 1;%*2) = *T*A/C& +%, 2Z? + 1, 2̂ ) - r(i + l)&zybIb(z) 
where M (a, bs z) and 1^ (z) are the Confluent Hypergeometric function and the 
Modified Bessel function of the first kind, respectively, 0 (a, d) can be 
expressed in terms of these functions as 
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InM_AHd) aM{a/d - % , laid - 1, kid) 
)(<z, d) = —gd^L— = . 

Ia/d(2/d) M(a/d+k, laid + 1, kid) 
When aid = -k, k = 0, 1, 25 . . . , we have 

0(-faZ, d) = -faf + )(-(/c - l ) d , d) 
and s i n c e 

1 IAUd) IAlld) 
Q / n /7") = — i = -1 

e ( d , d) x0(2/a7) J 0 ( 2 / d ) ' 
i t i s e a s i l y shown by i n d u c t i o n t h a t 

I j, AUd) 

There fo re , 

•«•-«- £ S S f 
for all (complex) a and d, d * 0 and -Ta/^ {lid) does not vanish. Since the Modi-
fied Bessel functions have no real zeros, the above expression is valid for all 
real a and d, d * 0. 

Finally, for (real) a and d - 0, we have the simple periodic continued 
fraction 

0(a, 0) = (a + /a2 + 4)/2 for a > 0, 

6(-a, 0) = -0(a, 0), and 6(0, 0) diverges. 

Also solved by the proposer who noted the following interesting result: 

(*) 0 ( 1 , 2) = coth 1. 

It A d d s Up! 

H-412 Proposed by Andreas N. Philippou & Frosso S. Makri, 
University of Patras, Patras, Greece 
(Vol. 25, no. 3, August, 1987) 

Show that 
k-l 

Z 
i = 0 " 
t 1 E ( " i + " ' " V * ) - ( ; ; ) ' * * i - o s r s * - i s " -
Tb «,, „., «A ni» • • •» nk I ^r/ 

where the inner summation is over all nonnegative integers n15 . . . , nk such 
that n1 + ln2 + • • • + knk == n - i and n1 + --'+nk=n-2n. 

Solution by W. Moser, McGill University, Montreal, Canada 

The number of solutions (#•,, x~ ? ..., ̂ n_P» 'O °f 

(1) x1 + x2 + .-. + xn„r + i = p 

(where xl5 x2, ..., xn_r, i are nonnegative integers)—or, equivalently, the 
number of ways of distributing r like objects into n - v - 1 unlike boxes—is 
(rJ. This is well known and easy to prove. Let 

(2) nq = ti{j\xj = q - 1, j = 1, 2, ..., n - r], q = 1, 2, ..., fc, 

i.e., n^ is the number of x- fs in (1) equal to g - 1. Since 
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x19x2, . .., xn_r, i e {0, 1, . .., r} and k - 1 > r, 

every Xj is counted once in the sum 

(3) n^ + n.^ + ••• + nk = n - v, 

while x1 + x2 + ••• + xn_r is equal to 

(4) n2 + 2n3 + ••• + (k - l)nk = r - i . 

[Note that (3) and (4) are together equivalent to (3) and nl + 2n2 + ••• + knk 

= n - %.} Thus, every solution of (1) yields a solution of (3) satisfying (4). 
For each i (i = 0, 1, ..., r) , how many solutions of (1) yield the same 
solution of (3)? Corresponding to a solution of (3) satisfying (4) there are 

/ n - v \ 
\nl, n2, . . . , nk) 

l i n e a r d i s p l a y s of n - r i n t e g e r s — r i \ O ' s , n 2 l ' s , . . . , nk k - l ' s — a n d t h e s e 
i n t e g e r s named from l e f t t o r i g h t x-,, x2, . . . , xn_r h a v e sum r - i . The i d e n -
t i t y f o l l o w s . 

Also solved by P. Bruckman, G. Dinside, and the proposers & D. Antzoulakos. 

G e n e r a l l y T r u e ? 

H - 4 1 3 Proposed by Gregory Wulczyn, Bucknell U. (retired) , Lewisburg, PA 
(Vol.. 25, no. 3 , August 1987) 

L e t 777, n be i n t e g e r s . I f 777 and n h a v e t h e same p a r i t y , show t h a t 

(1 ) (2777 + l)F2n + 1 - (2n + DF2m + l = 0 (mod 5 ) ; 

(2 ) (2777 + l)F2n + l - (2n + l)F2m + l E ° ( m o d 2 5 ) i f e i t h e r 

( a ) 277? + 1 o r In + 1 i s a m u l t i p l e of 5 , o r 
(b ) m = n E 0 o r T?7 E n E - 1 (mod 5 ) . 

If 77? and n have the opposite parity, show that 

(3 ) (2777 + l)F2n + l + {In + l)F2m + l = 0 (mod 5 ) ; 

(4 ) (2777 + l)F2n+l + (2n + l)F2m + 1 = 0 (mod 25) i f e i t h e r 

( a ) 2777 + 1 o r In + 1 i s a m u l t i p l e of 5 , o r 
(b ) m E ri E 0- o r m E n E - 1 (mod 5) . 

Solution by Paul S. Bruckman, (formerly) Fair Oaks, CA 

The i n d i c a t e d r e s u l t s a r e t r u e , b u t u n d e r more g e n e r a l c o n d i t i o n s . We p r o v e 
t h e more g e n e r a l r e s u l t . We d e f i n e D(m, n) f o r a l l i n t e g e r s 777 and n a s f o l -
l ows : 

(1 ) D(m9 n) = (2m + l ) F 2 n + 1 - (-l)m + n(2n + l)F2m + 1 . 

Also, for all integers k, we define Qk as follows: 

?2k + l (2) 
(-DkF? 

2k + 1 

Note: 
(3) D(m, n) = (-if (2m + I) {In + l){Bn - BJ . 

We now investigate the values of Qk (mod 25). Clearly, if k E 2 (mod 5), then 
2k + 1 E 0 (mod 5), so Qk (mod 25) and dk (mod 5) are not defined in this case. 
We find that 6̂  (mod 25) (as defined) is periodic, with period 50, and we may 
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form the following table (mod 25), omitting values of k with k = 2 (mod 5): 

k 

l 
3 
4 
5 
6 
8 
9 
10 
11 
13 
14 
15 
16 
18 
19 
20 
21 
23 
24 
25 
26 

{2k + 1 ) _ 1 (-

17 
18 
14 
16 
2 
3 
4 
6 
12 
13 
19 
21 
22 
23 
9 
11 
7 
8 
24 
1 
17 

> F2fe+1 

2 
13 
9 
14 
8 

L 22 
L 6 
L 21 
L 7 
L 18 
L 4 
L 19 
L 3 
L 17 
L 11 
L 16 
L 12 
L 23 
L 24 
L 24 
L 23 

V 
16 
16 
1 
1 
16 
16 
1 
1 
16 
16 
1 
1 
16 
16 
1 
1 
16 
16 
1 
1 
16 

k 

28 
29 
30 
31 
33 
34 
35 
36 
38 
39 
40 
41 
43 
44 
45 
46 
48 
49 
50 
51 
etc 

(2k + 1)-1 (-1) FZk^l 

18 ] 
14 -3 
16 1 
2 -] 
3 
4 
6 
12 
13 
19 
21 
22 
23 
9 
11 
7 
8 
24 
1 
17 

12 
16 
11 
17 
3 
19 
4 
18 
7 
21 
6 
22 
8 
14 
9 
13 
2 

L 1 
L 1 
L 2 

h 
16 
1 
1 
16 
16 
1 
1 
16 
16 
1 
1 
16 
16 
1 
1 
16 
16 
1 
1 
16 

Inspection of the foregoing table yields the following result: 

(4) Qk E 1 (mod 25) iff k E 0 or 4 (mod 5); 

Qk E 16 (mod 25) iff k = 1 or 3 (mod 5). 

It follows from (3) that D(m, ri) = 0 (mod 25) if any of the following condi-
tions on m and n (mod 5) hold: 

(m, n) = (0, 0), (0, 4), (4, 0), (4, 4), 
(1, 1)-, (1, 3), (3, 1), or (3, 3). 

This proves parts (2)(b) and (4)(b) of the problem, but gives more general 
conditions for which D(m, n) E 0 (mod 25). 

Now, if m E 2 (mod 5), then 2m + 1 E 0 (mod 5) and F2m+i = 0 (mod 5). Let-
ting Un = F2n+l ~ (-l)n(2n + 1) and Vn = F2n+l + (-l)n(2n + 1), we may form the 
following table (mod 25), which is periodic with period 50: 

From the table, we see that If m = 2 (mod 5), then 
D(m, n) E 0 (mod 25) for all n only if 5\Un or 5|Vn, 
i.e., F2n + l E ±(2n + 1) (mod 5) for all n. To test 
this, we prepare the following table (mod 5), which 
has period 20: 

m 

2 
7 
12 
17 
22 
27 
32 
37 
42 
47 
52 

2m + 1 

5 
-10 
0 
10 
-5 
5 

-10 
0 
10 
-5 
5 

F2*t + 1 

5 
10 
0 

-10 
-5 
5 
10 
0 

-10 
-5 
5 

Dfjn, n) 

5Un 
-10U„ 
0 

lOUn 
-5Un 

5̂ n 
-107,, 
0 

iovn 
-5Vn 

Wn 

k 

1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 

** 
1 
2 
0 
3 
4 
4 
3 
0 
2 
1 
1 

Fk + k or 

1 - 1 
3 + 2 
0 + 0 
7 + 3 
9-4 
11 + 4 
13-3 
15 + 0 
17-2 
19 + 1 
21 - 1 

Fk - k* 

= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
H 0 

whichever is applicable 

Thus, .5\Un or 51 Vn for all n, which proves that D(m, n) = 0 (mod 25) if m = 2 
(mod 5). Similarly, D(m, n) = 0 (mod 25) if n = 2 (mod 5). This proves parts 
(2)(a) and (4)(a) of the problem. Thus, if m E 2 or n E 2 (mod 5), D(m, n) E 0 
(mod 5). On the other hand, if m f 2 and n i 2 (mod 5), then Qm E 0n E 1 (mod 
5) (from the first table); in the latter case, therefore, D(m3 n) = 0 (mod 5) 
also [using (3)]. This proves parts (1) and (3). 

Also solved by L. Kuipers, L. Sohmer, and the proposer. 
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