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Introduction

Let 4 be in SI,(C) ("The special linear group of degree 2 over C'; see [5])
and let » be a positive integer. Let us look at all B's in SI,(C) for which
B™ = 4. |

If x = Tr A =+2, then 4 is diagonalizable since it has two different eigen-

values, namely, (x * Vx2 - 4)/2,?and it is trivial to compute all nt® roots of
A.

If A is the identity matrix and if & is an eigenvalue of some n'h root B of

A, then, unless § = *1, the other‘eigenvalue of B is different (as it is 1/6,
the determinant being 1) and therefore B 1s diagonalizable, that is, 5 is a
conjugate of (% 196)’ with § an nth root of 1; note that when & = *1, it is
. 0 | (—1 0 . ..
+ =
easy to check that B is _(O l>' The case A 0 _1) is similar.

1 0
0 1
cult; it turns out that there are either 0, 1, or 2 n'M root(s) in Si,(C), de-
pending on 7 and A. [

Finally, if x = 2, but 4 = £ ) the problem is slightly more diffi-

If A € GlI,(C) ("The general linear group of degree 2 over C"; see [5]) is
not a multiple of the identity, then 4 has exactly n n'! roots. If 4 is a mul-
tiple of the identity, then 4 has infinitely many nt! roots for any . -

Although we will compute roots in SI,(C) and Gi,(C), the immediate purpose

of this paper 78 not to compute roots in these groups. Our purpose is to give
a nonlinear-algebra approach to computing roots which rests on the arithmetic
involved in computing the powers of an element of Si,(C) or GI,(C). Computing

these powers involves a finite number of multiplications and additions; this
gives rise to polynomials and the arithmetic of these polynomials yields
another method to compute roots in Sl,(C) without any linear-algebra concept.
We obtain a complete description of these roots in this way, with
transcendental functions in expressions not mnaturally given by the linear-
algebra approach [see, e.g., (1.14-C)]. We will explore this arithmetic and
see how it connects most naturally with Chebyshev's polynomials. It also
yields a natural meaning to arbitrary complex powers in Sl,(C) and Gl,(C), and
we obtain an explicit formula allbwing computations of A4 for any » in a time
which theoretically does not depend on n [see (1.6), (1.8), and (2.1)]. As far
as computing roots 1is concerned, the arithmetic of these polynomials gives an
elegant nonlinear-algebra solution which solves the problem of extracting roots
in all cases in the same way, be the matrix diagonalizable or not.
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THE ARITHMETIC OF POWERS AND ROOTS

Computing roots of

a- (2 2)

is achieved first through computing roots of
A/Vad - be [which is trivially in SI,(C)];

therefore, we first study the arithmetic of powers and roots in SIL,(C). It
rests on two families of polynomials; if x and x, are, respectively, the traces
of 4 and

AT = Ay bn)
Cn dy)’
then x, is a polynomial in x which depends only on »n and not on 4. In addi-
tion, there is a polynomial P, which gives the values of b, and ¢, through

b, = bF,(x) and ¢, = cP, (x).

n

These polynomials are deeply related to Chebyshev's polynomials and a full
description of their  zeros yields a full description of all roots of any
element of SI,(C). The P,'s, which appear naturally in our problem have been
considered more or less directly in some other contexts (see [1], [3], and
[41).

The F,'s have received much attention, but as far as we know the ¥,'s have
received little; the computation of roots in SI,(C) has also received little
attention because in most practical cases there is an obvious linear-algebra
solution (which however masks the arithmetic behind the calculations). As far
as the raw computation of roots is concerned, we found a vague and partial
answer in [6] which triggered our investigation, and an exercise in [2] coming
from [7] which concerns the sole case when A4 is hermitian and n = 2. We are
thankful to Professor G. Bergum for bringing to our attention references [3]
and [4] regarding the P,'s.

Powers and Roots in S1,(C)

The starting point of this paper is the following family of polynomials:
for each n € Z, we define a polynomial F, by

(a) Py() = 0 and Py(¥) = 13 (b) F 1 (t) = tP (t) - F _(¥) (1.1)
These polynomials have the easily verified properties:
a) P (¥2) = n(x1)"*1; b) P, = -F,. (1.2)

Their roots are studied in [3] and [4], where P, = 4,, in their notation. The
following proposition, the proof of which is an easy induction on »n using
ad - bec = 1 [this matrix is in SI,(C)], ignited our interest in this family of
polynomials; we lately discovered a more general version of it in [1], but we
state in Proposition 1 just the particular case we need.

Proposition 1: Let A = (g Z) be an element of SlI,(C) and let us set x = a + d.

Then, for each n € Z:

a b\" _ (aP,(xX) = Py-1(x) bP,, (X) s
<c d> ( eP, (x) de, (x) - Pn—l(X)> (1.3)

Corollary: For A € SI,(C) and n € Z, if x and X, are, respectively, the trace
of 4 and A", then

Xn = Par100 = Puoi (O (1.4)
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THE ARITHMETIC OF POWERS AND ROOTS

Using (1.4) as a motivation, we introduce yet another family of polynomi-
als: for each m € Z, we set

X, () = Py () = B (8D

each x, is a polynomial of degree |n]; moreover x, = X_,», as is easily checked
from £, = -P_,. The table in the Appendix shows these polynomials for all
values of n in the range 2 < n < 20.

We shall need the zeros of all polynomials of the form x, - &, with £ € C.
Fortunately, these zeros are easy to describe and, surprisingly, this result
seems to be new.

Proposition 2: Let n > 0 and £ be an arbitrary complex number, and let us set

o = £/2. Then the n complex numbers £ps> €15 +--5 &y_1 defined by
argcosh o + 2kmi arccos p + 2k
£, =2 cosh( geosl 8z -7 ) =2 cos<~——————£L————j> (1.5)
n n
are the zeros of x, - ¢ (k =0, ..., n—-1).

Proof: 1f T, is the nth Chebyshev polynomial of the first kind (see [8] or
[9]), then one easily proves that the 7,'s are defined in terms of the P,'s by

27, (£) = P, 1(2t) — P, _1(28). (1.6)

Since we look for the solutions of

P (x) - P, _1(x)
Ln E, or equivalently of ntl - nol = D,
2 2 2
when we set x = 25, the problem reduces, using (l.6), to solving 7,(s) = p;
using the identities 7, (cos 8) = cos(n8) and T, (cosh 6) = cosh(nf), we see that
7,(s) = p has n solutions, which are given by
argcosh p + 2kni arccos + 2km
8, = cosh( g ;: ) = cos(—-——*£L—-4*>, (1.7)
where Kk =0, ..., n - 1 (simply write 7,(s) as 7T, (cos arccos g) =p ...]. These

solutions yield the solutions £, = 258,. Q.E.D.

Remark: It follows from (l1.6) that the value of the n™ Chebyshev polynomial
at any complex number s is the half-trace of 4", where 4 1is any element in
SI,(C) with half-trace s. Therefore, if s, is the half-trace of the n®™ power
of an element of 4 in SI,(C) with half-trace s, we have

s, = cosh(n argcosh s) = cos(n arccos s).

This is an easy exercise in linear algebra since given A there exists an
invertible matrix X such that

xAxT = (g 1?5)

Because the trace is invariant under conjugation, we have
s = cosh(Iln ¢§) and s, = cosh(ln §") = cosh(n argcosh s).
Next we need an explicit description of the zeros of the P,'s. These are
known (see [3] and [4], where 4,, in their notation is our F,) but our proof is

simpler and yields an explicit expression for the values of the P,'s [see (1.8)
below] which is used in proving Proposition 5.
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Proposition 3: For each integer n, the zeros of P, are
S, =2 cos(kw/]n{), (k =1, ..., lni - 1).
In particular, they are all real and distinct.
Proof: In view of (1.2)-(b), we will suppose, in full generality, that »n > 0.
Using the easily proved identity
(82 - 1)P,(28) = T,.,(8) - sT,(s),

which defines the P,'s in terms of the 7,'s, and the trivial identities (see

[81)

s = cosh(argcosh s) and T, (cosh x) = cosh(kx),
we have

(s2 - 1)P,(2s) = sinh(argcosh s)sinh(n argcosh s).

Upon writing s = cosh(argcosh s ), using the standard identities for hyperbolic
functions and using the relation (1.2)-(a) to take care of the case s = %1, we
obtain the following explicit formula for P, (2s), which one will observe gives
the value of P, without any iteration, and hence of the matrix

@ o
c d
without iteration:

ngntl if s = *1;

P,(28) = sinh(n argcosh s) otherwise (1.8)
sinh(argcosh s) ’

[Note that, with s # *1, the denominator of the lower part of (1.8) cannot be
0, and that the value of the quotient does not depend on which value is chosen
for argcosh s.] It follows from (1.8) that the solutions of P, (2s) = 0 are the
values of g for which (n argcosh g) is a multiple of nZ; these values are given
by
km _

8, = cos(;;), k=1, ..., n-1),

whence the result
K
S, = 28, =2 cos(;}), (k =1, ..., n-1). Q.E.D.

It is interesting here to compare the zeros of ¥, * 2 with those of P,.
From (1.5):

h 2w D -
The zeros of Xn 2: 50 = 2 cos O ‘El = 2 cos —, . , £ =2 ¢ (” )
3 on -
The zeros of Xn Tt 2: E-O = 2 cos = f—;l =2 ¢c0S =, ..., &£ = 2 cos ( ) .
The zeros of P, s 2 ™ 27 n - D
n? 1 cos n’ 52 cos 7 Sn—] = cos -————-—( )
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X3 —2: EUZZ, £1=—1, fz-———l Xe—2: £0=21 €1=Ov €2="21 £3=0
xs3+2: =1, 6=-2§=1 xe+2: b= V2 L=—V2 b=—V2 &=V2
P; 51—_—71, Sy = —1 Py : S1=\/§, S2=Oy 532‘\/5

FIGURE 1
The zeros of x, + 2, x,, - 2, and P,

Figure 1 shows the cases n = 3 and n = 4 and illustrates the essential con-
tent of Corollary 1 below; for convenience, let us call the zeros of yx, + 2 and
Xn — 2 "small zeros" when they are strictly less than 2 in absolute value.
Then, we clearly have the following:

Corollary 1:
1. The small zeros of x, + 2 and X, - 2 are each of multiplicity 2.

2. The small zeros of x, + 2 and the small zeros of x, - 2 form two dis=
joint subsets, the union of which is the set of zeros of P,.
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Corollary 2: For any n € Z and for any £ = *2, P, does not vanish on a zero of
Xn = &-

Corollary 1 states something on the values of P, at the zeros of x, * 2,

and Corolliary 2 on the values of P, at the zeros of ¥, - &, with § = %2. If we

agree to say that a function f separates » points 21, ..., 3, when f takes n
different values on {z,, ..., 2,}, then Proposition &4 below completes the
information of Corollaries 1 and 2. This proposition will be responsible for

the fact that the nonmultiple of the identity in Gl,(C) has exactly n distinct
n™ roots.

Proposition 4: For all n € Z and all £ = *2, P, separates the |n} zeros of x, -
£.

Proof: Since P_, = -P,, and x., = X», we may suppose, in all generality, that
n 2 0. The cases n = 0 and n = 1 are vacuously true because y; and x; have,
respectively, 0 and 1 zero [recall that xy(¢) = 2 and x1(¢) = ¢]. Therefore,
we suppose that n 2 2.

In order to consider the value of 7, on each of the zeros of ¥, - &, let us
set

argcosh £/2
. .

a+ bl =

Saying that & # *2 means that a + b7 is not a multiple of mi/n. The roots of
Xy — & are, after (1.5),

2kvz>

g, = 2 cosh(a + b7 + (k=0, ..., n-1),

and therefore,

P (&) = Pn<2 cosh(a + bi + 2§:¢>>

Now,

2kﬂl>

cosh(a + b1 + z *1,

since the contrary would imply that ¢ + b7 is a multiple of ni¢/n. It follows
from (1.8) that, for » =0, ..., n - 1,

sinh n(a + b7)
27mr
=)

P(g,) = (1.9

ZWT).

+ 7 cosh a 51n(b + .

sinh cos(b +

[The denominator is the expansion of sinh(a + bl + Zggi).]

If ¢ = 0, then, from (1.9), P, separates all ¢,, for the denominator takes
n different values, which are »n different points on the ellipse with center O
going through sinh a and 7 cosh 4. On the other hand, if ¢ = 0, P, cannot
identify two £,'s, for, in the case a = 0, (1.9) becomes
sin nb
2rﬂ>

51n(b + =

P (8 =

and P, identifying two £,'s, say &, and &, (with % = k), would imply that
2wky _ . 2nh
sln(b + —E~) = sin (b + >
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(because sin nb # 0 by Corollary 2 to Proposition 3), which would imply in turn
that b is a multiple of w/n, contradicting the hypothesis. Q.E.D.

Proposition 5:

1 0
0 1
where § is an nt! root of 1, and of all matrices

) is made of all diagonal matrices (6 0 ),

th
(a) The set of n roots of ( 0 1/5

cos %} 4+ T Y

kn (1.10)

Z cos — - T
n

where Y, Z, T, and k satisfy the following constraints:

(Cl): T is any complex number and YZ = —(TZ + sin? %})
[This means exactly that the determinant of (1.10) is 1];
(C2): k is even and 1 < k < n - 1.

-1 0
5 0 -1
matrices (O 1/6>’ where 8 is an nth root of -1, and of all matrices of

(b) The set of nth roots of ( ) in SlI,(C) is made of all diagonal

the form (1.10) satisfying constraint (Cl) above, constraint (C2) being

replaced by constraint (C3):

(C3): k is odd and 1 < k < n - 1.

Proof:
(a) Let ($ 2) be an nth root of the identity in SI,(C), and let § = o + &§.
By (1.3), we have
aP, (&) - P,_1(&) BP, (&) _(1 0
(& 52, = @) " Lo 1) (1.11)

If P,(¢) = 0, then 8 = y = 0 and o = 1/8§, which implies that o is an nth
root of 1, and we have a root which is a diagonal matrix (8 1?6) as desired.

We will therefore suppose that P, (g) = 0. From Proposition 3, we know that
km .
§ = 2 cos o for some k in {1, 2, ..., n - 1}.

It is clear from (1.11) that B and y obey no other constraints than ad - By =
1. On the other hand, o and § are determined by:

(A) o+ & =43 (B) P,-1(g) = -1. (1.12)
Using (1.8) to work out the value of P,_;(§) = P,_1(2 cos kn/n) we obtain
o sinh n - i)kﬂl sin,(n —nl)kﬂ .
20 = = = (-~ +
Py 2(cos ) — — (~1)k+1, (1.13)
sinh e sin o

It follows from (1.12)-(B) and (1.13) that kX must be even. [Remark: the con-
straint "k is even and 1 < k < n - 1" in (C2) implies that in (1.10) n > 3;
therefore, P,(¢) # 0 and the identity matrix has no square roots of the form
(1.10)]. Finally, (1.12)-(A) implies that if P, (¢§) = 0, then the diagonal of
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(? g) is of the form of the diagonal of (1.10). Moreover, constraint (Cl) is
satisfied since ($ §> is in SI,(C). As matrices of the form (1.10) are
clearly nth roots of the identity matrix (to see this, apply Proposition 1), we
have all nth roots of the identity with trace a zero of F,. This completes the
proof of (a).

(b) The proof runs parallel to the proof of (a). The constraint (1.12)-(B)
is to be replaced by P, _;(¢) = 1, which, by (1.13), implies that k is odd.

Remark: The fact that k is odd allows (_é _?) to have infinitely many roots

1 0

of any order in S1,(C), as opposed to (O 1

) which has only two square roots in
SI,(C).] Q.E.D.

We now hold all the necessary results to give a complete description of all
nth roots of any element of Sl,(C).

Theorem A: Let
_(a b
4=(2 7)) esn©,

n be any positive integer, t = (a - d)/2, and ¥ = a + d. Then the set of all
nth roots of 4 in SI,(C) is described as follows:

10

Case 1. A = i(o l)'

u
0
root of *1. [Remark: When 4 is the identity and n = 2,

(o 19u> - t(é ?)

is in the center of SlI,(C) and thus has no proper conjugates; this is why the
identity has only two square roots. Apart from this case 4 has infinitely many
nth roots for each n.]

The nth roots of 4 are exactly the conjugates of ( l?p)’ where p is an nth

Case 2. A is not the identity and x = 2.

There are only one or two root(s), depending on the parity of »n; this
(these) root(s) is (are)

a+ (n - 1) b _
@m(* T Qo) (1.14-A)
where o is *1 if n is even and +1 if »n is odd.
Case 3. A = <_é _2) but yx = -2.

There are no roots in SlI,(C) if n is even and only one root if »n is odd, in
which case this root is

a- (n-1) b -
(l/n)( . d- - 1)>. (1.14-B)

Case 4. x = *2.

There are exactly n distinct n'P roots. If we set

. inh n
W, = {(argcosh L) + okni and M, = EEE~—EK1—
K 2 k sinh Uy
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then these n'h roots are 4y, ..., 4,_;, where

cosh %f + tMy, bM,,
4y = . -
k el cosh 2k _ th> (1.14-C)
n
Proof of Theorem A:

Throughout, (g %) will represent an nth root of 4 = (g 2) and X = x + w.

. . 1 0 -1 0

C 1. W 11 d 1 =
ase e wi consider only the case of (O l)’ as the case 4 ( 0 —l)
follows immediately from it. We must prove that the set of conjugates of

(8 l?u)’ where p is an n'" root of 1, is the set of roots described by
Proposition 5(a). Let us write # (for #oot) for the set described by (1.5)-(a)
and ¢ (for ¥onjugate) for the set of conjugates of (u 0 ).

0 1/u
First, we need a detailed description of ¥; a direct calculation yields
By .
(u B)(p 0)( s —B) < uad - :r -2aB sinh(1ln u)
sNo 1 -~ ol ) oS , (1.15)
! Iy * 2y8 sinh(In ) '<BYU _':r)

where ad - By = 1. If we use the identity

x + w s -w
(x y) - ( 2 2 Y >
Z2 w x wo_x-w

o 2

N[+

to rewrite (1.15), we obtain

(cosh(ln w) + T sinh(ln u) -208 sinh(In u) 1.16)
2y$§ sinh(ln u) cosh(ln p) - T sinh(ln u) a.
where T = o8 + By. If u = e2K"i/n_ g =90, ..., n - 1, then (1.15) becomes
cos 2Kn + 7T sin 2Kn -2aB7 sin 2Kn
n n n 1.17)
.. 2Km 2Km . . 2Km | (1.
2y81 sin — cos — - [ sin —
n n 7

Matrix (1.17) characterizes the elements of ¥ and entails the detailed descrip-
tion of % that we now use.

We first show that¥ C #Z. If K = 0, (1.17) is the identity which is tri-
vially in #. 1If 1 < 2K < (n - 1), it is trivial to show that (1.17) has the
form (1.10) (see Proposition 5) by solving

cos 2K + 4T sin 2Kn -20B7 sin 2Kx
n n n
. . 2Kmw 2Km . . 2Km
2y87 sin — cos — - 7T sin —
n n n
km ,
_(cos o T ;ﬂ (1.18)
Z cos —= - T

with k, T, Y, 7 as unknowns. Finally, if n < 2K < 2(n - 1), then (1.17) is a
matrix with inverse of the form (1.17) for a value of K for which 0 < 2K < (n -
1); since # is closed for inversion, (1.17) is in Z.
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We next show that Z#C %. All matrices <g 13U)’ where 1 is an #nth root of

1, are trivially in ¥. Let us consider the system (1.18) with left-hand side

as unknown (that is, X, a, B, Yy, 8 are unknown) and I' set to o8 + By . Let us

set K = k/2. [Note that the left-hand side of (1.18) is a typical member of %,

and that the right-hand side is a typical member of #. Moreover, the left-hand
side of (1.18) is the left-hand side of (1.15) rearranged.]

If sin(2Kw/n) = 0, the left-hand side of (1.18) is <ié +?

-1 =

), which is tri-
vially in % |note that 0 occurs only if »n is even and X = n/2|. There-
0 -1

fore, we will suppose that sin(2Kkn/n) # 0. We wish to show that the elements
of # of the form of the right-hand side of (1.10) are in %, that is, that
(1.18), with the left-hand side as unknown, has a solution. This is achieved
through showing that the following system has a solution, where (b) comes from
2l = T [see (1.18)], and (C) and (D) from the nondiagonal terms of (1.18):

5
T + 7 sin %}
a) ad - By =1 A) aé = S
27 sin o
or km T
T T—?;Sinz“
b) ads + By = T B) By T &m
1 sin —- | 27 sin -
-Y
C) a8 = km
27, sin7
z
Dy ~s = km
27 sin —

and where

Y7 + T2 + sin? %} = 0 (Comstraint Cl, Proposition 5).

The subsystem (A, B, C) has the following solution in terms of a:

r _ __Y W
B = . km
207 sin —
7
—u(T - 7 sin %g)
y = (1.19)
Y
T + 7 sin %;
o =—
{ 207 sin km
7

[Note that, if Y = 0, we may use (D) to express y in terms of a, since Y = 7 =
0 is possibly only when (1.18) is (S l?p)’ a case which is trivially in ¥
therefore, we assume that |Y| + [Z[ #z 0 and, without loss of generality, that

Y = 0.] Constraint

YZ + T2 + sin?

2|F
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precisely means that the solutions (1.19) are cempatible with (D). Case 1 has
thus been established.

Case 2. A is not the identity but y = 2.
Then, by (1.2),

X . .
(e )= (xpn(xiﬁz(iﬁ 10 wpn<X?Pf(§3_l<x>)~

The M&bius transformation defined by (g 2) in PSI,(C) ("The projective special

(1.20)

linear group of degree 2 over C") has a unique fixed point as x = 2 (see [5]);
therefore, the one defined by (2 Z), the nth iteration of which is (i 2), has
also a unique fixed point; thus, we have X = *2. On the other hand,

X, (-2) = -2 if »n is odd,

as is easily checked. From yx,(X) = x = 2, we see that in the case where 7n is
odd we must have X = 2. Therefore, from (1.20) and

_ n+l _ J m if m is odd
P"(iz) n(x1) {tn if n is even
we have
ne = (n - 1) i if n if odd
nz nw - (n - 1) ’
0
e
<tnx - (-1 1y if n is even.
Nz tw - (n - 1)
Solving then for %, y, 3, w in terms of a, b, ¢, d yields
a+ (n-1) b . .
(x y) ) (l/n)( - d+ (n - 1)) if n is odd,
2w a+ (n - 1) b . .
(il/n)( - d+ (n - l)) if »n is even,

which is exactly (l.14-A).

Case 3. A = <_é _?) but x - 2.

As in Case 2, we must have X = *2; however, since
X, (22) = 2(x1)"FL =,
we must have X = -2 and n odd. Moreover, we then have
P,(X) =n and P,_1(X) = -(n - 1).
The result follows immediately from (1.20).
Case 4. x z 2.
X is a zero of X, — X» say (see Proposition 2),

argcosh(X/2) + 2kni _ 2 cos arccos(X/2) + 2km,
n n ’

X = & = 2 cosh (1.21)

t

consequently, from

(z 9 - (xP”(X;P;(ig—l(X> wP;(X%PZ(éz‘I(X)> - (2 2)

we obtain the following possibilities for (g %):
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a +Pn—1(5k) b
(x y) = (xk yk> = P (&) P, (&)
8w B Wy e d+ P,_1(53)
5 (5 B, (5)

(1.22)

[(1.22) uses tacitly Corollary 2 of Proposition 3 in using P (£ ) in the denom-
inator.] We first show that each of the » matrices defined by (1.22), (k = 0,

., n - 1), is an nth root of 4 in SI,(C) (see Lemma 1 below). Then we show
that these matrices are all different (see Lemma 4 below, which requires Lemmas

2 and 3).

Lemma 1: mw, - y,38;, =1 [the possible values of (x
tion 2 are all in SIZ(C)].

Proof: Let us set
_ argcosh(X/2) + 2kni

%) obtained from Proposi-

n
Then
1 inh u
= 221 by (1.8) and (1.22), and 2k = cosh u by (1.22),
P, (&)  sinh nu 2
wvhich gives
sinh u sinh u
cosh y + t —— b prpca—
(xk yk> _ sinh nu sinh nu
B Wy sinh u sinh u
c — cosh u - t ———
sinh nu sinh nu
Therefore,
2 \ 2 sinhzu
TpWy = Yp & = coshu - (be + ¢t );E;EEZ;,
but 2 _ 4qd 2
be + t2 = be + 1——7r——— = <%) - 1 = cosh?nu - 1 = sinhZ?uu,

whence the result. This completes the proof of Lemma 1.

Lemma 2: Tty = &g

Proof: From (1.22), we have
X+ ZPn—l(Ek)
P (4)
But (see the Remark following Proposition 2),

argcosh(xéZ) + 2kﬂi)> _ ZTH(%%);

T Yy =

X = ZTn<cosh(
therefore, from (1.6), we have

X = Pre1(Er) = Pr-1(81)>
which, by definition (1.1), gives

X = EkPn(Ek) - ZPn—l(Ek)-

(1.23)

Substituting this value of X into (1.23) yields the result and completes the

proof of Lemma 2.
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L (T yk> = (Ex/2 + /P (&) b/Py (&) R e A
emma 3 (Zk v, ( c/P, (E,) £,/2 - £/P, (£,) (Recall t > )
Proof: From (1.22) and Lemma 2, we have the linear system
Ly + Wy = Ek
o o o2t
k k=P (&)’

the solution of which is the required result; thus, Lemma 3 is proved.

Lemma 4: The matrices <§k Zk> (k =0, ..., n — 1) are all different.
k k

Proof: This is simply a consequence of Lemma 3 and Proposition 4, ‘since P,

separates the £;'s. This completes the proof of Lemma 4, and Theorem 4 has

thus been proved. Q.E.D.

Remark: The denominator of M, [see (1.14-C)], which is sinh u;, with

u, = argcosh % + 2kni,

does not depend on k because, if we set s = x/2, we have

sinh y; = +/g2 - 1,

where the sign is chosen so as to agree with the principal value of argcosh s;
note that M; does not depend on the choice of this principal value.
In the same fashion, we have

sinh L + s% -1
n

for the numerator of M; when we set Sy = cosh(uk/n). Thus, we have
My = #/s2 - 1/Vs? - 1,

and, clearly, only the numerator of this expression depends on k.

Roots in Gl, (C)

Let us conclude with the computation of roots in GIl,(C). For

_(a b
A= (c d) € Gl,(C),
let § be one of the two square roots of det A; we will write §, for §, 6. for
-8, A, for A/S§, and A. for A/S.. Clearly, A, and A. are in Sl,(C).

We first observe that the nth roots of 4 in Gl,(C) are elements of ¢B with:

® an nth root of &, and B an n'P root of A,
or (2.1)

® an nth root of &. and B an nth root of A_

Tt is clear that an element ®B is an n'™ root of 4, for
8§, A4,
(8B)" = ¢"B" ={ or , = A.
S_A.

Conversely, all n'h roots of 4 are of this form, for let (Z Z) be an nth root

of 4 and 1t be one of the two square roots of (aw - yz); then
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R R )

2w z/T. w/T

from which we get

n, _ (x/t ylt\»
(1/1)"4 = (Z/T w/r) :

The determinant of the right-hand side being

(WT_Z yz>n =L

we have that t” = §,; thus,

x _ (x/T /T
(Z Z) B T(Z/T %/T)
is of the form 5.

To obtain all nth roots of A, we shall compute all products B with ¢ and B
satisfying (2.1); note that, since 4, and A. are in Sl,(C), Theorem A gives all
possible B's. Let us agree that § is one of the square roots of (ad - be) for
which (R Tr 4,) = 0.

We first suppose that A is not a multiple of the identity. We consider
separately three cases:

Case A. Tr A, = 2 and n is even (say n = 2k). By Case 2 of Theorem A, A,
has two roots in Sl,(C) which are of opposite signs [see (l.14-A)]; on the
other hand, the roots ¢ of §, come in pairs with opposite signs and there are

2k of them. If 15 eevs B 01, ..., -9 are the »n possible values for ¢ and
Ag and -Ay are two roots of A,, then the set
{01, vouy 05 =01, ..., =0 1Ay, ~49} (2.2)

contains n elements.
On the other hand, A. has no n'" root (see Case 3 of Theorem A); thus, in
this case the products of the form

(a root of 6_)(a root of A_) (2.3)

contribute nothing. A_ has therefore altogether » distinct »'P roots and these
are the elements of the set (2.2).

Case B. Tr A, = 2 and »n is odd.

Each of 4, and A_ has exactly one n™® root in Sl,(C) (Cases 2 and 3 of The-
orem A), namely: ’

. _lfa/sy + (n - 1) b/és,
The root of A,: 4y = n( /s, a/s, + (n - l)>
., _1fals. - (n - 1) b/s >
The root of A_: Ay = n( c/s. d/s. - (n - 1)
(since 6§, = -6_, these two roots are of opposite signs). . If r = }6' and 6 is

the argument of §,, then the nth roots of &, and §_ are
for §,: reie/”{oo, cees Oyo10s
for 6_: ret®+m/nisy, ..., 0,1},

where o5, ..., 0 _] are the = nth roots of 1. Note that the second set is the
first set multiplied by -1. Therefore, the nth roots of A form the union of
the following two sets:
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Xy = re®®m{gy, ..., 0,_1}4
X, = ret®M{-gy, ..., 0, 1}(~4g)
Clearly, X; = X, and their union contains exactly 7 elements.
Case C. Tr 4, = 2.

Let o, ...s 0 _1 be the n nth roots of 1, and let B be one of the n nth
roots of A, [see Case 4 of Theorem A, (1.14)-C}]}. Then oyB, ..., 0,_1B are all
distinct and each of them is an n'™ root of 4, since (03, B)" = B" = A,. It fol~-
lows from Theorem A, Case 4, that opB, ..., 0,B are the n roots of 4,, and
therefore that the set of elements of the form

{(a Toot of §,)(a root of 4,) (2.4)
is, using the notation of Case B,

ret®/7{cy, ..., 0,_1HogBs ..., 0,-1B},
which is the set

ret®/M{c B, ..., 0,.1B}; " (2.5)

this set contains n elements.
If o is any n™ root of -1, a similar argument yields

re®®M{go,, ..., 00,13 {06gBs ..., 00,-1B}

for the set of elements of the form (2.3). This is
re™®m 62{cy, ..., 0,-13{0gBs +-vs On-1B},

which contains exactly »n distinct elements. Now, since ¢ is an nth root of -1,

02 is an n'" root of 1; then o2 is one of OQs> +»+s Oy-1> which implies that the

set of elements of the form (2.3) is described by (2.5), which is already the

set of elements of the form (2.4). Therefore, 4 has exactly #n distinct nth

roots in Gl (C).

The case when 4 is a (nonzero) multiple of the identity is immediate; A has

P . _th - . _ {a O) - - (—l 0 (—1 O)
infinitely many = roots, for if 4 (O al)? then 4 a 0 _1), and 0 -1
has infinitely many n'P roots for each n (see Theorem A, Case 1). Hence, we
have proved the following theorem, which is our conclusion.

Theorem B: Let 4 be in GI,(C).

(1 0

a) If A is a nonzero multiple of 0 1

), then A4 has infinitely

many nth roots;

b) If 4 is not a multiple of (é ?

tinct n' roots. They are of the form ¢B satisfying (2.1).

), then A4 has exactly »n dis-
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Appendix

Polynomials P, and ¥, for 2 < n < 20

P,
n
Xn
z
2 2 -2
2
z° -1
3 z* — 3z
4 z° — 22
zt - 427 +2
5 zt -3z +1
z® — 5z° + 5z
6 z° — 42 + 32
z® — 6z + 927 -2
7 2% — 52 4627 ~ 1
2’ —Tz® + 142® — Tz
8 2" —62° +10z° — 4z
z® —8z° + 202 — 1627 +2
s z® —7z% 4+ 152* — 1027 +1
z? — 9z7 + 27z% — 30z° + 9z
10 z° —8z7 + 21z° — 20z° + 5z
2% — 102® 4 352° — 502* + 252° — 2
1 z'% — 92® 4 282° — 35z + 1527 -1
z!t — 112° 4 4427 — 7725 4 552° — 11z
12 2!t — 102° + 362" - 562° + 352° — 6z
z!? - 122" 4 54z — 1122°® 4+ 1052* — 3622 + 2
13 z'? ~ 112'% 4 45z° — 84z° 4+ T0z* — 2127 + 1
1 — 13z 4 652° — 15627 + 1822° — 912° + 13z
14 z'? — 122" 4 552° — 12027 + 1262° — 56z° + Tz
z'* — 1427 4 772'° — 2102° + 2942° — 1962* + 4927 — 2
15 z' — 1327 + 662" — 165z° + 210z® — 1262* + 282% — 1
z!® — 152" + 90z — 275z° + 45027 — 378z% + 140z — 15z
16 z'® — 142" 4 78z'% — 220z° + 330z" — 2522° + 84z> — 8z
z*® ~ 162" 4 1042'? — 35220 + 6602° — 6722° + 336z — 6427 + 2
- z1% — 152 1+ 912'% - 2862'% + 4952° — 4622% + 2102 — 3627 + 1
' — 17z'% + 1192 — 4422 + 9352° — 112227 4 T142® — 2042° 4 172
z'7 — 162'% + 1052 — 364zt + T152° — 79227 + 4622° — 120z° + 9z
181 218 _ 182 4 1350 — 54623 + 12872'0 — 17822 + 13862° — 540z + 81z% — 2
1o 21~ 172'® 1+ 1202 — 45522 + 10012'° — 1287z° — 924z° — 330z + 4527 — |
Tz — 192" 41522 — 6652"° + 1729z — 27172 + 250827 — 12542° + 2852° — 19z
20 2% — 18217 4 1362'® —5602'% + 1365z! — 2002z° + 171627 — 792z° + 165z> — 10z
2% — 20z'® 4 1702'® - 800z'* + 22752'% - 40042® + 4290z° — 26402 + 8252% — 100z? -+ 2
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