THE ARITHMETIC OF POWERS AND ROOTS IN $Gl_2(C)$ AND $Sl_2(C)$

Pierre Damphousse

Faculté des Sciences de Tours, Parc de Grammont, Tours 37200, France (Submitted June 1986)

Introduction

Let A be in $Sl_2(\mathbb{C})$ ("The special linear group of degree 2 over \mathbb{C} "; see [5]) and let n be a positive integer. Let us look at all B's in $Sl_2(\mathbb{C})$ for which

If $\chi = \operatorname{Tr} A \neq \pm 2$, then A is diagonalizable since it has two different eigenvalues, namely, $(\chi \pm \sqrt{\chi^2 - 4})/2$, and it is trivial to compute all n^{th} roots of

If A is the identity matrix and if δ is an eigenvalue of some n^{th} root B of A, then, unless $\delta = \pm 1$, the other eigenvalue of B is different (as it is $1/\delta$, the determinant being 1) and therefore B is diagonalizable, that is, B is a conjugate of $\begin{pmatrix} \delta & 0 \\ 0 & 1/\delta \end{pmatrix}$, with δ and δ and δ are represented that when $\delta = \pm 1$, it is easy to check that δ is $\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. The case $\delta = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ is similar. Finally, if $\delta = \pm 1$, but $\delta = \pm 1$, it is easy to check that $\delta = 1$.

cult; it turns out that there are either 0, 1, or 2 n^{th} root(s) in $SI_2(C)$, depending on n and A.

If $A \in Gl_2(\mathbb{C})$ ("The general linear group of degree 2 over \mathbb{C} "; see [5]) is not a multiple of the identity, then A has exactly n $n^{\rm th}$ roots. If A is a multiple of the identity, then A has infinitely many n^{th} roots for any n.

Although we will compute roots in $SI_2(C)$ and $GI_2(C)$, the immediate purpose of this paper $is\ not$ to compute roots in these groups. Our purpose is to give a nonlinear-algebra approach to computing roots which rests on the arithmetic involved in computing the powers of an element of $SI_2(C)$ or $GI_2(C)$. Computing these powers involves a finite number of multiplications and additions; this gives rise to polynomials and the arithmetic of these polynomials yields another method to compute roots in $Sl_2(C)$ without any linear-algebra concept. We obtain a complete description of these roots in this way, with transcendental functions in expressions not naturally given by the linearalgebra approach [see, e.g., (1.14-C)]. We will explore this arithmetic and see how it connects most naturally with Chebyshev's polynomials. It also yields a natural meaning to arbitrary complex powers in $Sl_2(C)$ and $Gl_2(C)$, and we obtain an explicit formula allowing computations of A for any n in a time which theoretically does not depend on n [see (1.6), (1.8), and (2.1)]. As far as computing roots is concerned, the arithmetic of these polynomials gives an elegant nonlinear-algebra solution which solves the problem of extracting roots in all cases in the same way, be the matrix diagonalizable or not.

Computing roots of

$$A = \begin{pmatrix} \bar{\alpha} & b \\ c & d \end{pmatrix}$$

is achieved first through computing roots of

$$A/\sqrt{ad-bc}$$
 [which is trivially in $Sl_2(C)$];

therefore, we first study the arithmetic of powers and roots in $Sl_2(C)$. It rests on two families of polynomials; if χ and χ_n are, respectively, the traces of A and

$$A^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix},$$

then χ_n is a polynomial in χ which depends only on n and not on A. In addition, there is a polynomial P_n which gives the values of b_n and c_n through

$$b_n = bP_n(\chi)$$
 and $c_n = cP_n(\chi)$.

These polynomials are deeply related to Chebyshev's polynomials and a full description of their zeros yields a full description of all roots of any element of $Sl_2(C)$. The P_n 's, which appear naturally in our problem have been considered more or less directly in some other contexts (see [1], [3], and [4]).

The P_n 's have received much attention, but as far as we know the χ_n 's have received little; the computation of roots in $\operatorname{Sl}_2(\mathbb{C})$ has also received little attention because in most practical cases there is an obvious linear-algebra solution (which however masks the arithmetic behind the calculations). As far as the raw computation of roots is concerned, we found a vague and partial answer in [6] which triggered our investigation, and an exercise in [2] coming from [7] which concerns the sole case when A is hermitian and n=2. We are thankful to Professor G. Bergum for bringing to our attention references [3] and [4] regarding the P_n 's.

Powers and Roots in Sl₂(C)

The starting point of this paper is the following family of polynomials: for each $n \in \mathbb{Z}$, we define a polynomial P_n by

(a)
$$P_0(t) = 0$$
 and $P_1(t) = 1$; (b) $P_{n+1}(t) = tP_n(t) - P_{n-1}(t)$ (1.1)

These polynomials have the easily verified properties:

a)
$$P_n(\pm 2) = n(\pm 1)^{n+1}$$
; b) $P_{-n} = -P_n$. (1.2)

Their roots are studied in [3] and [4], where $P_n = A_{2n}$ in their notation. The following proposition, the proof of which is an easy induction on n using ad - bc = 1 [this matrix is in $\mathrm{SI}_2(\mathbf{C})$], ignited our interest in this family of polynomials; we lately discovered a more general version of it in [1], but we state in Proposition 1 just the particular case we need.

Proposition 1: Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of $SI_2(C)$ and let us set $\chi = a + d$. Then, for each $n \in \mathbf{Z}$:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^n = \begin{pmatrix} \alpha P_n(\chi) - P_{n-1}(\chi) & b P_n(\chi) \\ c P_n(\chi) & d P_n(\chi) - P_{n-1}(\chi) \end{pmatrix}$$
 (1.3)

Corollary: For $A \in Sl_2(\mathbb{C})$ and $n \in \mathbb{Z}$, if χ and χ_n are, respectively, the trace of A and A^n , then

$$\chi_n = P_{n+1}(\chi) - P_{n-1}(\chi).$$
 (1.4)

Using (1.4) as a motivation, we introduce yet another family of polynomials: for each $n \in \mathbf{Z}$, we set

$$\chi_n(t) = P_{n+1}(t) - F_{n-1}(t);$$

each χ_n is a polynomial of degree |n|; moreover $\chi_n = \chi_{-n}$, as is easily checked from $F_n = -P_{-n}$. The table in the Appendix shows these polynomials for all values of n in the range $2 \le n \le 20$.

We shall need the zeros of all polynomials of the form χ_n - ξ , with $\xi \in \mathbf{C}$. Fortunately, these zeros are easy to describe and, surprisingly, this result seems to be new.

Proposition 2: Let n>0 and ξ be an arbitrary complex number, and let us set $\rho=\xi/2$. Then the n complex numbers ξ_0 , ξ_1 , ..., ξ_{n-1} defined by

$$\xi_k = 2 \cosh\left(\frac{\operatorname{argcosh} \rho + 2k\pi i}{n}\right) = 2 \cos\left(\frac{\operatorname{arccos} \rho + 2k\pi}{n}\right)$$
 (1.5)

are the zeros of χ_n - ξ (k = 0, ..., n - 1).

Proof: If T_n is the n^{th} Chebyshev polynomial of the first kind (see [8] or [9]), then one easily proves that the T_n 's are defined in terms of the P_n 's by

$$2T_n(t) = P_{n+1}(2t) - P_{n-1}(2t). (1.6)$$

Since we look for the solutions of

$$\frac{\chi_n}{2} = \frac{\xi}{2}$$
, or equivalently of $\frac{P_{n+1}(x) - P_{n-1}(x)}{2} = \rho$,

when we set x=2s, the problem reduces, using (1.6), to solving $T_n(s)=\rho$; using the identities $T_n(\cos\theta)=\cos(n\theta)$ and $T_n(\cosh\theta)=\cosh(n\theta)$, we see that $T_n(s)=\rho$ has n solutions, which are given by

$$s_k = \cosh\left(\frac{\operatorname{argcosh} \, \rho + 2k\pi i}{n}\right) = \cos\left(\frac{\operatorname{arccos} \, \rho + 2k\pi}{n}\right),$$
 (1.7)

where k=0, ..., n-1 (simply write $T_n(s)$ as $T_n(\cos\arccos s)=\rho$...]. These solutions yield the solutions $\xi_k=2s_k$. Q.E.D.

Remark: It follows from (1.6) that the value of the $n^{\rm th}$ Chebyshev polynomial at any complex number s is the half-trace of A^n , where A is any element in ${\rm SI}_2({\bf C})$ with half-trace s. Therefore, if s_n is the half-trace of the $n^{\rm th}$ power of an element of A in ${\rm SI}_2({\bf C})$ with half-trace s, we have

$$s_n = \cosh(n \operatorname{argcosh} s) = \cos(n \operatorname{arccos} s)$$
.

This is an easy exercise in linear algebra since given ${\it A}$ there exists an invertible matrix ${\it X}$ such that

$$XAX^{-1} = \begin{pmatrix} \delta & \star \\ 0 & 1/\delta \end{pmatrix}.$$

Because the trace is invariant under conjugation, we have

$$s = \cosh(\ln \delta)$$
 and $s_n = \cosh(\ln \delta^n) = \cosh(n \operatorname{argcosh} s)$.

Next we need an explicit description of the zeros of the P_n 's. These are known (see [3] and [4], where A_{2n} in their notation is our P_n) but our proof is simpler and yields an explicit expression for the values of the P_n 's [see (1.8) below] which is used in proving Proposition 5.

Proposition 3: For each integer n, the zeros of P_n are

$$S_k = 2 \cos(k\pi/|n|), (k = 1, ..., |n| - 1).$$

In particular, they are all real and distinct.

Proof: In view of (1.2)-(b), we will suppose, in full generality, that n>0. Using the easily proved identity

$$(s^2 - 1)P_n(2s) = T_{n+1}(s) - sT_n(s),$$

which defines the P_n 's in terms of the \overline{T}_n 's, and the trivial identities (see [8])

$$s = \cosh(\operatorname{argcosh} s)$$
 and $T_k(\cosh x) = \cosh(kx)$,

we have

$$(s^2 - 1)P_n(2s) = \sinh(\operatorname{argcosh} s)\sinh(n \operatorname{argcosh} s)$$
.

Upon writing $s = \cosh(\operatorname{argcosh} s)$, using the standard identities for hyperbolic functions and using the relation (1.2)-(a) to take care of the case $s = \pm 1$, we obtain the following explicit formula for $P_n(2s)$, which one will observe gives the value of P_n without any iteration, and hence of the matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^n$$

without iteration:

$$P_n(2s) = \begin{cases} ns^{n+1} & \text{if } s = \pm 1; \\ \frac{\sinh(n \operatorname{argcosh} s)}{\sinh(\operatorname{argcosh} s)} & \text{otherwise.} \end{cases}$$
 (1.8)

[Note that, with $s \neq \pm 1$, the denominator of the lower part of (1.8) cannot be 0, and that the value of the quotient does not depend on which value is chosen for argcosh s.] It follows from (1.8) that the solutions of $P_n(2s) = 0$ are the values of s for which (n argcosh s) is a multiple of πi ; these values are given by

$$s_k = \cos\left(\frac{k\pi}{n}\right)$$
, $(k = 1, \ldots, n - 1)$,

whence the result

$$S_k = 2s_k = 2 \cos(\frac{k\pi}{n}), \quad (k = 1, ..., n - 1).$$
 Q.E.D.

It is interesting here to compare the zeros of χ_n ± 2 with those of \mathcal{P}_n . From (1.5):

The zeros of
$$\chi_n - 2$$
: $\xi_0 = 2 \cos 0$, $\xi_1 = 2 \cos \frac{2\pi}{n}$, ..., $\xi_{n-1} = 2 \cos \frac{2(n-1)\pi}{n}$

The zeros of $\chi_n + 2$: $\xi_0 = 2 \cos \frac{\pi}{n}$, $\xi_1 = 2 \cos \frac{3\pi}{n}$, ..., $\xi_{n-1} = 2 \cos \frac{(2n-1)\pi}{n}$

The zeros of P_n : $S_1 = 2 \cos \frac{\pi}{n}$, $S_2 = \cos \frac{2\pi}{n}$, ..., $S_{n-1} = \cos \frac{(n-1)\pi}{n}$

FIGURE 1

The zeros of χ_n + 2, χ_n - 2, and P_n

Figure 1 shows the cases n=3 and n=4 and illustrates the essential content of Corollary 1 below; for convenience, let us call the zeros of χ_n+2 and χ_n-2 "small zeros" when they are strictly less than 2 in absolute value. Then, we clearly have the following:

Corollary 1:

- 1. The small zeros of χ_n + 2 and χ_n 2 are each of multiplicity 2.
- 2. The small zeros of χ_n + 2 and the small zeros of χ_n 2 form two disjoint subsets, the union of which is the set of zeros of P_n .

Corollary 2: For any $n \in \mathbb{Z}$ and for any $\xi \neq \pm 2$, P_n does not vanish on a zero of $\chi_n - \xi$.

Corollary 1 states something on the values of P_n at the zeros of $\chi_n \pm 2$, and Corollary 2 on the values of P_n at the zeros of $\chi_n - \xi$, with $\xi \neq \pm 2$. If we agree to say that a function f separates n points z_1 , ..., z_n when f takes n different values on $\{z_1$, ..., $z_n\}$, then Proposition 4 below completes the information of Corollaries 1 and 2. This proposition will be responsible for the fact that the nonmultiple of the identity in $\mathrm{GI}_2(\mathbf{C})$ has exactly n distinct n^{th} roots.

Proposition 4: For all $n \in \mathbb{Z}$ and all $\xi \neq \pm 2$, P_n separates the |n| zeros of $\chi_n - \xi$.

Proof: Since $P_{-n} = -P_n$ and $\chi_{-n} = \chi_n$, we may suppose, in all generality, that $n \geq 0$. The cases n = 0 and n = 1 are vacuously true because χ_0 and χ_1 have, respectively, 0 and 1 zero [recall that $\chi_0(t) = 2$ and $\chi_1(t) = t$]. Therefore, we suppose that $n \geq 2$.

In order to consider the value of P_n on each of the zeros of χ_n - ξ , let us set

$$\alpha + bi = \frac{\operatorname{argcosh} \xi/2}{n}$$
.

Saying that $\xi \neq \pm 2$ means that $\alpha + bi$ is not a multiple of $\pi i/n$. The roots of $\chi_n - \xi$ are, after (1.5),

$$\xi_k = 2 \cosh(\alpha + bi + \frac{2k\pi i}{n})$$
 (k = 0, ..., n - 1),

and therefore,

$$P_n(\xi_k) = P_n\left(2\cosh\left(a + bi + \frac{2k\pi i}{n}\right)\right).$$

Now,

$$\cosh\left(\alpha + bi + \frac{2k\pi i}{n}\right) \neq \pm 1,$$

since the contrary would imply that $\alpha + bi$ is a multiple of $\pi i/n$. It follows from (1.8) that, for $r = 0, \ldots, n-1$,

$$P_n(\xi_r) = \frac{\sinh n(\alpha + bi)}{\sinh \alpha \cos\left(b + \frac{2\pi r}{n}\right) + i \cosh \alpha \sin\left(b + \frac{2\pi r}{n}\right)}.$$
 (1.9)

The denominator is the expansion of $\sinh\left(a + bi + \frac{2\pi ri}{n}\right)$.

If $\alpha \neq 0$, then, from (1.9), P_n separates all ξ_r , for the denominator takes n different values, which are n different points on the ellipse with center 0 going through $\sinh \alpha$ and i $\cosh \alpha$. On the other hand, if $\alpha = 0$, P_n cannot identify two ξ_r 's, for, in the case $\alpha = 0$, (1.9) becomes

$$P_n(\xi_r) = \frac{\sin nb}{\sin(b + \frac{2r\pi}{n})},$$

and P_n identifying two ξ_r 's, say ξ_h and ξ_k (with $h \neq k$), would imply that

$$\sin\left(b + \frac{2\pi k}{n}\right) = \sin\left(b + \frac{2\pi h}{n}\right)$$

(because $\sin nb \neq 0$ by Corollary 2 to Proposition 3), which would imply in turn that b is a multiple of π/n , contradicting the hypothesis. Q.E.D.

Proposition 5:

(a) The set of n^{th} roots of $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is made of all diagonal matrices $\begin{pmatrix} \delta & 0 \\ 0 & 1/\delta \end{pmatrix}$, where δ is an n^{th} root of 1, and of all matrices

$$\begin{pmatrix}
\cos\frac{k\pi}{n} + T & Y \\
Z & \cos\frac{k\pi}{n} - T
\end{pmatrix}$$
(1.10)

where Y, Z, T, and k satisfy the following constraints:

- (C1): T is any complex number and $YZ = -\left(T^2 + \sin^2\frac{k\pi}{n}\right)$ [This means exactly that the determinant of (1.10) is 1];
- (C2): k is even and $1 \le k \le n 1$.
- (b) The set of n^{th} roots of $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ in $\operatorname{SI}_2(\mathbf{C})$ is made of all diagonal matrices $\begin{pmatrix} \delta & 0 \\ 0 & 1/\delta \end{pmatrix}$, where δ is an n^{th} root of -1, and of all matrices of the form (1.10) satisfying constraint (C1) above, constraint (C2) being replaced by constraint (C3):
 - (C3): k is odd and $1 \le k \le n 1$.

Proof:

(a) Let $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ be an n^{th} root of the identity in $SI_2(C)$, and let $Q = \alpha + \delta$. By (1.3), we have

$$\begin{pmatrix} \alpha P_n\left(Q\right) & -P_{n-1}\left(Q\right) & \beta P_n\left(Q\right) \\ \gamma P_n\left(Q\right) & \delta P_n\left(Q\right) & -P_{n-1}\left(Q\right) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \tag{1.11}$$

If $P_n(Q)=0$, then $\beta=\gamma=0$ and $\alpha=1/\delta$, which implies that α is an n^{th} root of 1, and we have a root which is a diagonal matrix $\begin{pmatrix} \delta & 0 \\ 0 & 1/\delta \end{pmatrix}$ as desired. We will therefore suppose that $P_n(Q)=0$. From Proposition 3, we know that

$$Q = 2 \cos \frac{k\pi}{n}$$
 for some k in {1, 2, ..., $n - 1$ }.

It is clear from (1.11) that β and γ obey no other constraints than $\alpha\delta$ - $\beta\gamma$ = 1. On the other hand, α and δ are determined by:

(A)
$$\alpha + \delta = Q$$
; (B) $P_{n-1}(Q) = -1$. (1.12)

Using (1.8) to work out the value of $P_{n-1}(Q) = P_{n-1}(2 \cos k\pi/n)$ we obtain

$$P_{n-1} \ 2\left(\cos\frac{k\pi}{n}\right) = \frac{\sinh\frac{(n-1)k\pi i}{n}}{\sinh\frac{k\pi i}{n}} = \frac{\sin\frac{(n-1)k\pi}{n}}{\sin\frac{k\pi}{n}} = (-1)^{k+1}. \tag{1.13}$$

It follows from (1.12)-(B) and (1.13) that k must be even. [Remark: the constraint "k is even and $1 \le k \le n - 1$ " in (C2) implies that in (1.10) $n \ge 3$; therefore, $P_2(Q) \ne 0$ and the identity matrix has no square roots of the form (1.10)]. Finally, (1.12)-(A) implies that if $P_n(Q) = 0$, then the diagonal of

[Nov.

 $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ is of the form of the diagonal of (1.10). Moreover, constraint (C1) is satisfied since $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ is in $\mathrm{SI}_2(\mathbf{C})$. As matrices of the form (1.10) are clearly n^{th} roots of the identity matrix (to see this, apply Proposition 1), we have all n^{th} roots of the identity with trace a zero of P_n . This completes the proof of (a).

(b) The proof runs parallel to the proof of (a). The constraint (1.12)-(B) is to be replaced by $P_{n-1}(Q)=1$, which, by (1.13), implies that k is odd. [Remark: The fact that k is odd allows $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ to have infinitely many roots of any order in $\mathrm{Sl}_2(\mathbf{C})$, as opposed to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ which has only two square roots in $\mathrm{Sl}_2(\mathbf{C})$.] Q.E.D.

We now hold all the necessary results to give a complete description of all $n^{\rm th}$ roots of any element of ${\rm SI}_2(C)$.

Theorem A: Let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SI_2(\mathbb{C}),$$

n be any positive integer, $t=(\alpha-d)/2$, and $\chi=\alpha+d$. Then the set of all $n^{\rm th}$ roots of A in ${\rm SI}_2({\bf C})$ is described as follows:

Case 1.
$$A = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

The $n^{\rm th}$ roots of A are exactly the conjugates of $\begin{pmatrix} \mu & 0 \\ 0 & 1/\mu \end{pmatrix}$, where μ is an $n^{\rm th}$ root of ± 1 . [Remark: When A is the identity and n=2,

$$\begin{pmatrix} \mu & 0 \\ 0 & 1/\mu \end{pmatrix} = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

is in the center of $\mathrm{SI}_2(\mathbf{C})$ and thus has no proper conjugates; this is why the identity has only two square roots. Apart from this case A has infinitely many n^{th} roots for each n.

Case 2. A is not the identity and χ = 2.

There are only one or two root(s), depending on the parity of n; this (these) root(s) is (are)

$$(\sigma/n)\binom{\alpha + (n-1)}{c} \binom{b}{d + (n-1)}, \tag{1.14-A}$$

where σ is ± 1 if n is even and ± 1 if n is odd.

Case 3.
$$A \neq \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 but $\chi = -2$.

There are no roots in $\operatorname{SI}_2(\mathbf{C})$ if n is even and only one root if n is odd, in which case this root is

$$(1/n)\begin{pmatrix} a - (n-1) & b \\ c & d - (n-1) \end{pmatrix}$$
 (1.14-B)

Case 4. $\chi \neq \pm 2$.

There are exactly n distinct n^{th} roots. If we set

$$\mu_k = \left(\operatorname{argcosh} \frac{x}{2}\right) + 2k\pi i \quad \text{and} \quad M_k = \frac{\sinh \mu_k/n}{\sinh \mu_k},$$

then these n^{th} roots are A_0 , ..., A_{n-1} , where

$$A_{k} = \begin{pmatrix} \cosh \frac{\mu_{k}}{n} + tM_{k} & bM_{k} \\ cM_{k} & \cosh \frac{\mu_{k}}{n} - tM_{k} \end{pmatrix}. \tag{1.14-C}$$

Proof of Theorem A:

Throughout, $\begin{pmatrix} x & y \\ z & w \end{pmatrix}$ will represent an n^{th} root of $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and X = x + w.

<u>Case 1</u>. We will consider only the case of $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, as the case $A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ follows immediately from it. We must prove that the set of conjugates of $\begin{pmatrix} \mu & 0 \\ 0 & 1/\mu \end{pmatrix}$, where μ is an $n^{ ext{th}}$ root of 1, is the set of roots described by Proposition 5(a). Let us write \Re (for \Re 00t) for the set described by (1.5)-(a) and \mathscr{C} (for \mathscr{C} onjugate) for the set of conjugates of $\begin{pmatrix} \mu & 0 \\ 0 & 1/\mu \end{pmatrix}$.

First, we need a detailed description of \mathscr{C} ; a direct calculation yields

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} \mu & 0 \\ 0 & 1/\mu \end{pmatrix} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix} = \begin{pmatrix} \mu \alpha \delta - \frac{\beta \gamma}{\mu} & -2\alpha \beta \sinh(\ln \mu) \\ 2\gamma \delta \sinh(\ln \mu) & -\left(\beta \gamma \mu - \frac{\alpha \delta}{\mu}\right) \end{pmatrix},$$
 (1.15)

where $\alpha\delta$ - $\beta\gamma$ = 1. If we use the identity

$$\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} \frac{x+w}{2} + \frac{x-w}{2} & y \\ z & \frac{x+w}{2} - \frac{x-w}{2} \end{pmatrix}$$

to rewrite (1.15), we obtain

$$\begin{pmatrix} \cosh(\ln \mu) + \Gamma \sinh(\ln \mu) & -2\alpha\beta \sinh(\ln \mu) \\ 2\gamma\delta \sinh(\ln \mu) & \cosh(\ln \mu) - \Gamma \sinh(\ln \mu) \end{pmatrix}$$
 (1.16) where $\Gamma = \alpha\delta + \beta\gamma$. If $\mu = e^{2K\pi i/n}$, $K = 0, \ldots, n-1$, then (1.15) becomes

$$\begin{pmatrix}
\cos\frac{2K\pi}{n} + i\Gamma\sin\frac{2K\pi}{n} & -2\alpha\beta i\sin\frac{2K\pi}{n} \\
2\gamma\delta i\sin\frac{2K\pi}{n} & \cos\frac{2K\pi}{n} - i\Gamma\sin\frac{2K\pi}{n}
\end{pmatrix}.$$
(1.17)

Matrix (1.17) characterizes the elements of $\mathscr C$ and entails the detailed description of \mathscr{C} that we now use.

We first show that $\mathscr{C} \subseteq \mathscr{R}$. If K = 0, (1.17) is the identity which is trivially in \Re . If $1 \le 2K \le (n - 1)$, it is trivial to show that (1.17) has the form (1.10) (see Proposition 5) by solving

$$\begin{pmatrix}
\cos \frac{2K\pi}{n} + i\Gamma \sin \frac{2K\pi}{n} & -2\alpha\beta i \sin \frac{2K\pi}{n} \\
2\gamma\delta i \sin \frac{2K\pi}{n} & \cos \frac{2K\pi}{n} - i\Gamma \sin \frac{2K\pi}{n}
\end{pmatrix}$$

$$= \begin{pmatrix}
\cos \frac{k\pi}{n} + T & Y \\
Z & \cos \frac{k\pi}{n} - T
\end{pmatrix}$$
(1.18)

with k, T, Y, Z as unknowns. Finally, if $n \le 2K \le 2(n-1)$, then (1.17) is a matrix with inverse of the form (1.17) for a value of K for which $0 \le 2K \le (n - 1)$ 1); since $\mathcal R$ is closed for inversion, (1.17) is in $\mathcal R$.

We next show that $\mathcal{R} \subseteq \mathcal{C}$. All matrices $\begin{pmatrix} \mu & 0 \\ 0 & 1/\mu \end{pmatrix}$, where μ is an n^{th} root of 1, are trivially in \mathcal{C} . Let us consider the system (1.18) with left-hand side as unknown (that is, K, α , β , γ , δ are unknown) and Γ set to $\alpha\delta + \beta\gamma$. Let us set K = k/2. [Note that the left-hand side of (1.18) is a typical member of \mathcal{C} , and that the right-hand side is a typical member of \mathcal{R} . Moreover, the left-hand side of (1.18) is the left-hand side of (1.15) rearranged.]

If $\sin(2K\pi/n)=0$, the left-hand side of (1.18) is $\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}$, which is trivially in $\mathscr C$ [note that $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ occurs only if n is even and K=n/2]. Therefore, we will suppose that $\sin(2K\pi/n)\neq 0$. We wish to show that the elements of $\mathscr R$ of the form of the right-hand side of (1.10) are in $\mathscr C$, that is, that (1.18), with the left-hand side as unknown, has a solution. This is achieved through showing that the following system has a solution, where (b) comes from $i\Gamma=T$ [see (1.18)], and (C) and (D) from the nondiagonal terms of (1.18):

$$\begin{cases} a) & \alpha \delta - \beta \gamma = 1 \\ b) & \alpha \delta + \beta \gamma = \frac{T}{i \sin \frac{k\pi}{n}} \end{cases} \text{ or } \begin{cases} A) & \alpha \delta = \frac{T + i \sin \frac{k\pi}{n}}{2i \sin \frac{k\pi}{n}} \\ B) & \beta \gamma = \frac{T - i \sin \frac{k\pi}{n}}{2i \sin \frac{k\pi}{n}} \end{cases}$$

$$\begin{cases} C) & \alpha \beta = \frac{-Y}{2i \sin \frac{k\pi}{n}} \\ D) & \gamma \delta = \frac{Z}{2i \sin \frac{k\pi}{n}} \end{cases}$$

and where

 $YZ + T^2 + \sin^2 \frac{k\pi}{n} = 0$ (Constraint C1, Proposition 5).

The subsystem (A, B, C) has the following solution in terms of α :

$$\begin{cases} \beta = \frac{-Y}{2\alpha i \sin \frac{k\pi}{n}} \\ \gamma = \frac{-\alpha \left(T - i \sin \frac{k\pi}{n}\right)}{Y} \\ \alpha = \frac{T + i \sin \frac{k\pi}{n}}{2\alpha i \sin \frac{k\pi}{n}} \end{cases}$$

$$(1.19)$$

[Note that, if Y=0, we may use (D) to express γ in terms of α , since Y=Z=0 is possibly only when (1.18) is $\begin{pmatrix} \mu & 0 \\ 0 & 1/\mu \end{pmatrix}$, a case which is trivially in $\mathscr C$; therefore, we assume that $|Y|+|Z|\neq 0$ and, without loss of generality, that $Y\neq 0$. Constraint

$$YZ + T^2 + \sin^2 \frac{k\pi}{n} = 0$$

precisely means that the solutions (1.19) are compatible with (D). Case 1 has thus been established.

Case 2. A is not the identity but $\chi = 2$.

Then, by (1.2),

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} xP_n(X) - P_{n-1}(X) & yP_n(X) \\ zP_n(X) & wP_n(X) - P_{n-1}(X) \end{pmatrix}. \tag{1.20}$$

The Möbius transformation defined by $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $PSI_2(C)$ ("The projective special linear group of degree 2 over C") has a unique fixed point as χ = 2 (see [5]); therefore, the one defined by $\begin{pmatrix} x & y \\ z & w \end{pmatrix}$, the n^{th} iteration of which is $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, has also a unique fixed point; thus, we have X = ± 2 . On the other hand,

$$\chi_n(-2) = -2$$
 if n is odd,

as is easily checked. From $\chi_n(X)=\chi=2$, we see that in the case where n is odd we must have X=2. Therefore, from (1.20) and

$$P_n(\pm 2) = n(\pm 1)^{n+1} = \begin{cases} n & \text{if } n \text{ is odd} \\ \pm n & \text{if } n \text{ is even} \end{cases}$$

we have

$$\begin{pmatrix} \alpha & b \\ c & d \end{pmatrix} = \begin{cases} \begin{pmatrix} nx - (n-1) & ny \\ nz & nw - (n-1) \end{pmatrix} & \text{if n if odd,} \\ \begin{pmatrix} \pm nx - (n-1) & \pm ny \\ \pm nz & \pm nw - (n-1) \end{pmatrix} & \text{if n is even.} \end{cases}$$

Solving then for x, y, z, w in terms of α , b, c, d yields

$$\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{cases} (1/n) \begin{pmatrix} a + (n-1) & b \\ c & d + (n-1) \end{pmatrix} & \text{if } n \text{ is odd,} \\ (\pm 1/n) \begin{pmatrix} a + (n-1) & b \\ c & d + (n-1) \end{pmatrix} & \text{if } n \text{ is even,} \end{cases}$$

which is exactly (1.14-A).

Case 3.
$$A \neq \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 but $\chi - 2$.

As in Case 2, we must have $X = \pm 2$; however, since

$$\chi_n(\pm 2) = 2(\pm 1)^{n+1} = \chi,$$

we must have X = -2 and n odd. Moreover, we then have

$$P_n(X) = n$$
 and $P_{n-1}(X) = -(n-1)$.

The result follows immediately from (1.20).

Case 4. $\chi \neq \pm 2$.

X is a zero of χ_n - χ , say (see Proposition 2),

$$X = \xi_k = 2 \cosh \frac{\operatorname{argcosh}(\chi/2) + 2k\pi i}{n} = 2 \cos \frac{\operatorname{arccos}(\chi/2) + 2k\pi}{n}; \quad (1.21)$$

consequently, from

$$\begin{pmatrix} x & y \\ z & w \end{pmatrix}^n = \begin{pmatrix} xP_n\left(X\right) - P_{n-1}(X) & yP_n\left(X\right) \\ zP_n\left(X\right) & wP_n\left(X\right) - P_{n-1}(X) \end{pmatrix} = \begin{pmatrix} \alpha & b \\ c & d \end{pmatrix}$$

we obtain the following possibilities for $\begin{pmatrix} x & y \\ z & w \end{pmatrix}$:

$$\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x_k & y_k \\ z_k & w_k \end{pmatrix} = \begin{pmatrix} \frac{\alpha + P_{n-1}(\xi_k)}{P_n(\xi)} & \frac{b}{P_n(\xi_k)} \\ \frac{c}{P_n(\xi_k)} & \frac{d + P_{n-1}(\xi_k)}{P_n(\xi_k)} \end{pmatrix}$$
 (1.22)

[(1.22) uses tacitly Corollary 2 of Proposition 3 in using P (ξ) in the denominator.] We first show that each of the n matrices defined by (1.22), (k = 0, ..., n - 1), is an n^{th} root of A in $\text{SI}_2(\mathbf{C})$ (see Lemma 1 below). Then we show that these matrices are all different (see Lemma 4 below, which requires Lemmas 2 and 3).

Lemma 1: $x_k w_k - y_k z_k = 1$ [the possible values of $\begin{pmatrix} x & y \\ z & w \end{pmatrix}$ obtained from Proposition 2 are all in $\mathrm{SI}_2(\mathbf{C})$].

Proof: Let us set

$$u = \frac{\operatorname{argcosh}(\chi/2) + 2k\pi i}{n}.$$

Then

$$\frac{1}{P_n(\xi_k)} = \frac{\sinh u}{\sinh nu}$$
 by (1.8) and (1.22), and $\frac{\xi_k}{2} = \cosh u$ by (1.22),

which gives

$$\begin{pmatrix} x_k & y_k \\ z_k & w_k \end{pmatrix} = \begin{pmatrix} \cosh u + t & \frac{\sinh u}{\sinh nu} & b & \frac{\sinh u}{\sinh nu} \\ c & \frac{\sinh u}{\sinh nu} & \cosh u - t & \frac{\sinh u}{\sinh nu} \end{pmatrix}.$$

Therefore,

$$x_k w_k - y_k z_k = \cosh^2 u - (bc + t^2) \frac{\sinh^2 u}{\sinh^2 u}$$

but

$$bc + t^2 = bc + \frac{\chi^2 - 4ad}{4} = \left(\frac{\chi}{2}\right)^2 - 1 = \cosh^2 nu - 1 = \sinh^2 nu$$

whence the result. This completes the proof of Lemma 1.

Lemma 2: $x_k + y_k = \xi_k$.

Proof: From (1.22), we have

$$x_k + y_k = \frac{\chi + 2P_{n-1}(\xi_k)}{P_n(\xi_k)}$$
 (1.23)

But (see the Remark following Proposition 2),

$$\chi = 2T_n \left(\cosh \left(\frac{\operatorname{argcosh}(\chi/2) + 2k\pi i}{n} \right) \right) = 2T_n \left(\frac{\xi_k}{2} \right);$$

therefore, from (1.6), we have

$$\chi = P_{n+1}(\xi_k) - P_{n-1}(\xi_k),$$

which, by definition (1.1), gives

$$\chi = \xi_k P_n(\xi_k) - 2P_{n-1}(\xi_k).$$

Substituting this value of $\it X$ into (1.23) yields the result and completes the proof of Lemma 2.

$$Lemma \ 3: \begin{pmatrix} x_k & y_k \\ z_k & w_k \end{pmatrix} = \begin{pmatrix} \xi_k/2 + t/P_n(\xi_k) & b/P_n(\xi_k) \\ c/P_n(\xi_k) & \xi_k/2 - t/P_n(\xi_k) \end{pmatrix} \quad \Big(\text{Recall: } t = \frac{\alpha - d}{2} \Big).$$

Proof: From (1.22) and Lemma 2, we have the linear system

$$\begin{cases} x_k + w_k = \xi_k \\ x_k - w_k = \frac{2t}{P_n(\xi_k)}, \end{cases}$$

the solution of which is the required result; thus, Lemma 3 is proved.

Lemma 4: The matrices $\begin{pmatrix} x_k & y_k \\ z_k & w_k \end{pmatrix}$ (k = 0, ..., n - 1) are all different.

Proof: This is simply a consequence of Lemma 3 and Proposition 4, since P_n separates the ξ_k 's. This completes the proof of Lemma 4, and Theorem 4 has thus been proved. Q.E.D.

Remark: The denominator of M_k [see (1.14-C)], which is sinh μ_k , with

$$\mu_k = \operatorname{argcosh} \frac{\chi}{2} + 2k\pi i$$
,

does not depend on k because, if we set $s = \chi/2$, we have

$$\sinh \mu_k = \pm \sqrt{s^2 - 1},$$

where the sign is chosen so as to agree with the principal value of argcosh s; note that M_k does not depend on the choice of this principal value.

In the same fashion, we have

$$\sinh \frac{\mu_k}{n} = \pm \sqrt{s_k^2 - 1}$$

for the numerator of ${\it M}_k$ when we set $s_k = \cosh(\mu_k/n)$. Thus, we have

$$M_k = \pm \sqrt{s_k^2 - 1} / \sqrt{s^2 - 1}$$

and, clearly, only the numerator of this expression depends on k.

Roots in Gl₂(C)

Let us conclude with the computation of roots in $Gl_2(C)$. For

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Gl_2(C)$$
,

let δ be one of the two square roots of det A; we will write δ_+ for δ_- for $-\delta$, A_+ for A/δ_+ and A_- for A/δ_- . Clearly, A_+ and A_- are in $Sl_2(C)$. We first observe that the n^{th} roots of A in $Gl_2(C)$ are elements of ΦB with:

$$\begin{cases}
\Phi \text{ an } n^{\text{th}} \text{ root of } \delta_{+} \text{ and } B \text{ an } n^{\text{th}} \text{ root of } A_{+} \\
& \text{or} \\
\Phi \text{ an } n^{\text{th}} \text{ root of } \delta_{-} \text{ and } B \text{ an } n^{\text{th}} \text{ root of } A_{-}
\end{cases}.$$
(2.1)

It is clear that an element ΦB is an n^{th} root of A, for

$$(\Phi B)^n = \Phi^n B^n = \begin{cases} \delta_+ A_+ \\ \text{or} \\ \delta_- A_- \end{cases} = A.$$

Conversely, all n^{th} roots of A are of this form, for let $\begin{pmatrix} x & y \\ z & w \end{pmatrix}$ be an n^{th} root of A and τ be one of the two square roots of (xw - yz); then

$$A = \begin{pmatrix} x & y \\ z & w \end{pmatrix}^n = \tau^n \begin{pmatrix} x/\tau & y/\tau \\ z/\tau & w/\tau \end{pmatrix}^n$$

from which we get

$$(1/\tau)^n A = \begin{pmatrix} x/\tau & y/\tau \\ z/\tau & w/\tau \end{pmatrix}^n$$
.

The determinant of the right-hand side being

$$\left(\frac{xw - yz}{T^2}\right)^n = 1,$$

we have that $\tau^n = \delta_{\pm}$; thus,

$$\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \tau \begin{pmatrix} x/\tau & y/\tau \\ z/\tau & w/\tau \end{pmatrix}$$

is of the form ΦB .

To obtain all n^{th} roots of A, we shall compute all products ΦB with Φ and B satisfying (2.1); note that, since A_+ and A_- are in $\operatorname{Sl}_2(\mathbb{C})$, Theorem A gives all possible B's. Let us agree that δ is one of the square roots of (ad - bc) for which $(\Re \operatorname{Tr} A_+) \geq 0$.

We first suppose that A is not a multiple of the identity. We consider separately three cases:

<u>Case A.</u> Tr A_+ = 2 and n is even (say n = 2k). By Case 2 of Theorem A, A_+ has two roots in $\operatorname{Sl}_2(\mathbf{C})$ which are of opposite signs [see (1.14-A)]; on the other hand, the roots Φ of δ_+ come in pairs with opposite signs and there are 2k of them. If Φ_1 , ..., Φ_k , $-\Phi_1$, ..., $-\Phi_k$ are the n possible values for Φ and A_0 and A_0 are two roots of A_+ , then the set

$$\{\Phi_1, \ldots, \Phi_k, -\Phi_1, \ldots, -\Phi_k\}\{A_0, -A_0\}$$
 (2.2)

contains n elements.

On the other hand, A_{-} has no $n^{\rm th}$ root (see Case 3 of Theorem A); thus, in this case the products of the form

(a root of
$$\delta_{-}$$
)(a root of A_{-}) (2.3)

contribute nothing. A_{-} has therefore altogether n distinct n^{th} roots and these are the elements of the set (2.2).

Case B. Tr A_+ = 2 and n is odd.

Each of A_+ and A_- has exactly one n^{th} root in $Sl_2(C)$ (Cases 2 and 3 of Theorem A), namely:

The root of
$$A_+$$
: $A_0 = \frac{1}{n} \begin{pmatrix} a/\delta_+ + (n-1) & b/\delta_+ \\ c/\delta_+ & d/\delta_+ + (n-1) \end{pmatrix}$

The root of
$$A_{-}$$
: $-A_{0} = \frac{1}{n} \begin{pmatrix} \alpha/\delta_{-} - (n-1) & b/\delta_{-} \\ c/\delta_{-} & d/\delta_{-} - (n-1) \end{pmatrix}$

(since δ_+ = $-\delta_-$, these two roots are of opposite signs). If $r=\left|\delta\right|$ and θ is the argument of δ_+ , then the $n^{\rm th}$ roots of δ_+ and δ_- are

for
$$\delta_+$$
: $re^{i\theta/n}\{\sigma_0, \ldots, \sigma_{n-1}\},$

for
$$\delta_{-}$$
: $re^{i(\theta+\pi)/n} \{\sigma_{0}, \ldots, \sigma_{n-1}\},$

where σ_0 , ..., σ_{-1} are the n $n^{\rm th}$ roots of 1. Note that the second set is the first set multiplied by -1. Therefore, the $n^{\rm th}$ roots of A form the union of the following two sets:

$$X_1 = re^{i\theta/n} \{ \sigma_0, \dots, \sigma_{n-1} \} A_0$$

 $X_2 = re^{i\theta/n} \{ -\sigma_0, \dots, -\sigma_{n-1} \} (-A_0)$

Clearly, X_1 = X_2 and their union contains exactly n elements.

Case C. Tr $A_+ \neq 2$.

Let σ_0 , ..., σ_{-1} be the n n^{th} roots of 1, and let B be one of the n n^{th} roots of A_+ [see Case 4 of Theorem A, (1.14)-C)]. Then $\sigma_0 B$, ..., $\sigma_{n-1} B$ are all distinct and each of them is an n^{th} root of A_+ since $(\sigma_k B)^n = B^n = A_+$. It follows from Theorem A, Case 4, that $\sigma_0 B$, ..., $\sigma_n B$ are the n roots of A_+ , and therefore that the set of elements of the form

(a root of
$$\delta_+$$
) (a root of A_+) (2.4)

is, using the notation of Case B,

$$re^{i\theta/n}\{\sigma_0, \ldots, \sigma_{n-1}\}\{\sigma_0 B, \ldots, \sigma_{n-1} B\},$$

which is the set

$$re^{i\theta/n}\{\sigma_0 B, \ldots, \sigma_{n-1} B\};$$
 (2.5)

this set contains n elements.

If σ is any n^{th} root of -1, a similar argument yields

$$re^{i\theta/n}\{\sigma\sigma_0, \ldots, \sigma\sigma_{n-1}\}\{\sigma\sigma_0B, \ldots, \sigma\sigma_{n-1}B\}$$

for the set of elements of the form (2.3). This is

$$re^{i\theta/n} \sigma^2 \{\sigma_0, \ldots, \sigma_{n-1}\} \{\sigma_0 B, \ldots, \sigma_{n-1} B\},$$

which contains exactly n distinct elements. Now, since σ is an n^{th} root of -1, σ^2 is an n^{th} root of 1; then σ^2 is one of σ_0 , ..., σ_{n-1} , which implies that the set of elements of the form (2.3) is described by (2.5), which is already the set of elements of the form (2.4). Therefore, A has exactly n distinct n^{th} roots in $\text{Gl}_2(\mathbb{C})$.

The case when A is a (nonzero) multiple of the identity is immediate; A has infinitely many n^{th} roots, for if $A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$, then $A = -a \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, and $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ has infinitely many n^{th} roots for each n (see Theorem A, Case 1). Hence, we have proved the following theorem, which is our conclusion.

Theorem B: Let A be in $Gl_2(C)$.

- a) If A is a nonzero multiple of $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then A has infinitely many n^{th} roots;
- b) If A is not a multiple of $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then A has exactly n distinct n^{th} roots. They are of the form ΦB satisfying (2.1).

References

- 1. R. Barakat. "The Matrix Operator e^{χ} and the Lucas Polynomials." J. Math. Phys. 43 (1964):332-335.
- 2. R. Bellman. Introduction to matrix Analysis, 2nd ed., pp. 93-94. New York: McGraw-Hill, 1970.
- 3. A. F. Horadam & E. M. Horadam. "Roots of Recurrence-Generated Polynomials." Fibonacci Quarterly 20.3 (1982):219-226.

- 4. A. F. Horadam & A. G. Shannon. "Irrational Sequence-Generated Factors of
- Integers." Fibonacci Quarterly 19.3 (1981):240-250.

 J. Lehner. A Short Course in Automorphic Functions. New York: Holt, Rinehart and Winston, 1966.
- 6. H. L. Nelson. "Matrix Root." *J. Recreational Math.* 9.2 (1976-1977):135.
 7. H. Putnam. "On Square Roots and Logarithm of Operators." Purdue University, PRF-1421, 1958.
- T. J. Rivlin. The Chebyshev Polynomials. New York: Wiley & Sons, 1974.
 M. A. Snyder. Chebyshev Methods in Numerical Approximation. Garden City, N.J.: Prentice-Hall, 1966.

Appendix

Polynomials P_n and χ_n for $2 \le n \le 20$

	p_n
	χn
2	x x^2-2
:	$x^2 - 1$ $x^3 - 3x$
4	$\begin{array}{c} x^3 - 2x \\ x^4 - 4x^2 + 2 \end{array}$
	$x^4 - 3x^2 + 1$ $x^5 - 5x^3 + 5x$
($x^{5} - 4x^{3} + 3x$ $x^{6} - 6x^{4} + 9x^{2} - 2$
	$x^{6} - 5x^{4} + 6x^{2} - 1$ $x^{7} - 7x^{5} + 14x^{3} - 7x$
	$x^{7} - 6x^{5} + 10x^{3} - 4x$ $x^{8} - 8x^{6} + 20x^{4} - 16x^{2} + 2$
,	$x^{8} - 7x^{6} + 15x^{4} - 10x^{2} + 1$ $x^{9} - 9x^{7} + 27x^{5} - 30x^{3} + 9x$
10	$x^9 - 8x^7 + 21x^5 - 20x^3 + 5x$ $x^{10} - 10x^8 + 35x^6 - 50x^4 + 25x^2 - 2$
1	$x^{10} - 9x^{6} + 28x^{5} - 35x^{4} + 15x^{2} - 1$ $x^{11} - 11x^{9} + 44x^{7} - 77x^{5} + 55x^{3} - 11x$
13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1:	$3 x^{12} - 11x^{10} + 45x^{8} - 84x^{6} + 70x^{4} - 21x^{2} + 1$ $x^{13} - 13x^{11} + 65x^{9} - 156x^{7} + 182x^{5} - 91x^{3} + 13x$
1.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1!	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10	$x^{15} - 14x^{13} + 78x^{11} - 220x^{9} + 330x^{7} - 252x^{5} + 84x^{3} - 8x$ $x^{16} - 16x^{14} + 104x^{12} - 352x^{10} + 660x^{8} - 672x^{6} + 336x^{4} - 64x^{2} + 2$
1'	$ 7 x^{16} - 15x^{14} + 91x^{12} - 286x^{10} + 495x^8 - 462x^6 + 210x^4 - 36x^2 + 1 $ $ x^{17} - 17x^{15} + 119x^{13} - 442x^{11} + 935x^9 - 1122x^7 + 714x^5 - 204x^3 + 17x $
1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	$x^{16} - 17x^{16} + 120x^{14} - 455x^{12} + 1001x^{10} - 1287x^{8} - 924x^{6} - 330x^{4} + 45x^{2} - 1$ $x^{19} - 19x^{17} + 152x^{15} - 665x^{13} + 1729x^{11} - 2717x^{9} + 2508x^{7} - 1254x^{5} + 285x^{3} - 19x$
20	$x^{19} - 18x^{17} + 136x^{15} - 560x^{13} + 1365x^{11} - 2002x^{9} + 1716x^{7} - 792x^{5} + 165x^{3} - 10x$ $x^{20} - 20x^{18} + 170x^{16} - 800x^{14} + 2275x^{12} - 4004x^{10} + 4290x^{8} - 2640x^{6} + 825x^{4} - 100x^{2} + 2$