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Introduction 

Let A be in SI2(C) ("The special linear group of degree 2 over C"; see [5]) 
and let n be a positive integer. Let us look at all 5's in SI^CC) for which 
Bn = A. 

If x = TrA * ±2, then A is diagonalizable since it has two different eigen-
values, namely, (x ± /x2 - 4)/2, and it is trivial to compute all n th roots of 
A. 

If A is the identity matrix and if 6 is an eigenvalue of some nth root B of 
A, then, unless 6 = ±1, the other eigenvalue of B is different (as it is 1/6, 
the determinant being 1) and therefore B is diagonalizable, that is, B is a 

conjugate of ( . ,. J , with 5 an nth root of 1; note that when 6 = ±1, it is 

easy to check that B is ±( 1 ) . The case A = ( ) is similar, 
/1 0\ 

Finally, if x = ±2, but A * ± ( J, the problem is slightly more diffi-
cult; it turns out that there are either 0, 1, or 2 nth root(s) in S^CC), de-
pending on n and A. 

If A E Gl2(C) ("The general linear group of degree 2 over C"; see [5]) is 
not a multiple of the identity, then A has exactly n nth roots. If A is a mul-
tiple of the identity, then A has infinitely many nth roots for any n. • 

Although we will compute roots in SI 2(C) and Gl2(C), the immediate purpose 
of this paper is not to compute roots in these groups. Our purpose is to give 
a nonlinear-algebra approach to computing roots which rests on the arithmetic 
involved in computing the powers of an element of SI2(C) or G^CC). Computing 
these powers involves a finite number of multiplications and additions; this 
gives rise to polynomials and the arithmetic of these polynomials yields 
another method to compute roots in SI2(C) without any linear-algebra concept. 
We obtain a complete description of these roots in this way, with 
transcendental functions in expressions not naturally given by the linear-
algebra approach [see, e.g., (1.14-C)]. We will explore this arithmetic and 
see how it connects most naturally with Chebyshev?s polynomials. It also 
yields a natural meaning to arbitrary complex powers in S^CC) and G^CC), and 
we obtain an explicit formula allowing computations of A for any n in a time 
which theoretically does not depend on n [see (1.6), (1.8), and (2.1)]. As far 
as computing roots is concerned, the arithmetic of these polynomials gives an 
elegant nonlinear-algebra solution which solves the problem of extracting roots 
in all cases in the same way, be the matrix diagonalizable or not. 
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Computing r o o t s of 
'a bs 

,c d> « - ( l 5) 
is achieved first through computing roots of 

A/^ad - be [which is trivially in S^CC)]; 

therefore, we first study the arithmetic of powers and roots in SI 2(C). It 
rests on two families of polynomials; if x and Xn are, respectively, the traces 
of A and 

An - Ian bn 
\Cn Un 

then xn is a polynomial in x which depends only on n and not on A . In addi-
tion, there is a polynomial Pn which gives the values of bn and cn through 

hn = hpn (x) and cn = cPn (x) . 

These polynomials are deeply related to Chebyshev's polynomials and a full 
description of their zeros yields a full description of all roots of any 
element of SI 2(C). The Pn

 1 s, which appear naturally in our problem have been 
considered more or less directly in some other contexts (see [1], [3], and 
[4]). 

The Pn
 ! s have received much attention, but as far as we know the Xn's n a v e 

received little; the computation of roots in S^CC) has also received little 
attention because in most practical cases there is an obvious linear-algebra 
solution (which however masks the arithmetic behind the calculations). As far 
as the raw computation of roots is concerned, we found a vague and partial 
answer in [6] which triggered our investigation, and an exercise in [2] coming 
from [7] which concerns the sole case when A is hermitian and n = 2. We are 
thankful to Professor G. Bergum for bringing to our attention references [3] 
and [4] regarding the Pn '' s. 

Powers and Roots In S12(C) 

The starting point of this paper is the following family of polynomials: 
for each n € Z, we define a polynomial Pn by 

(a) PQ(t) = 0 and P^t) = 1; (b) P„+1(« = tPn (t) - ̂ ^ ( t ) (1.1) 

These polynomials have the easily verified properties: 

a) P„(±2) = w(±l)n+1; b) P_n = -Pn. (1.2) 

Their roots are studied in [3] and [4], where Pn = A2n in their notation. The 
following proposition, the proof of which is an easy induction on n using 
ad - bo = 1 [this matrix is in S ^ C ) ] , ignited our interest in this family of 
polynomials; we lately discovered a more general version of it in [1], but we 
state in Proposition 1 just the particular case we need. 

Proposition 1: Let A = ( -,) be an element of SI2(C) and let us set \ = a + d. 
Then, for each n E Z: 

»\n , (aPn(x) ~ P„-i(x) bPn(x) \ n ,) 
V \ cPn(x) dPn(X) - Pn-i(x)l 

Corollary: For A € SI2(C) and n € Z, if x a n d Xn
 are> respectively, the trace 

of A and An, then 

Xn = P„+i(x) - P„-i(x). (1.4) 
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Using (1.4) as a motivation, we introduce yet another family of polynomi-
a l s : for each n e Z, we set 

x „ W = Pn+iW - f n - i ( * ) ; 
each xn is a polynomial of degree \n\ ; moreover x = X_w» a s i-s easily checked 
from F„ = -P-n . The table in the Appendix shows these polynomials for all 
values of n in the range 2 < n < 20. 

We shall need the zeros of all polynomials of the form xn ~ ^> with £ e C. 
Fortunately, these zeros are easy to describe and, surprisingly, this result 
seems to be new. 

Proposition 2: Let n > 0 and £ be an arbitrary complex number, and let us set 
p = £/2. Then the n complex numbers £Q, £ ]_ , ..., Cn-1 defined by 

/argcosh p + 2ki\i\ /arccos p + 2ki\\ 
Zk = 2 coshl 1 = 2 cosf J (1.5) 

are the zeros of x - E, (k = 0, . . . , n - 1) . 

Proof: If Tn is the nth Chebyshev polynomial of the first kind (see [8] or 
[9]), then one easily proves that the Tn's are defined in terms of the Pn 's by 

2Tn(t) =Pn+1(2t) ~Pn,l(2t). (1.6) 

Since we look for the solutions of 

X n e . , Pn+l(x) ~ P n - l W 

—- = —, or equivalently of = p, 
2 . 2 2 

when we set x = 2s, the problem reduces, using (1.6), to solving Tn (s) = p ; 
using the identities Tn(cos 6) = cos(n0) and Tn (cosh 6) = cosh(n0), we see that 
T (s) = p has n solutions, which are given by 

(argcosh p + 2/C7ri\ /arccos p + 2ki\\ 
= COS , n ) \ n ) (1.7) 

where k = 0, ..., n - 1 (simply write Tn{s) as T^(cos arccos s) = p . . . ] . These 
solutions yield the solutions E,-. = 2s^ . Q.E.D. 

Remark: It follows from (1.6) that the value of the nth Chebyshev polynomial 
at any complex number s is the half-trace of An, where A is any element in 
S?2(C) with half-trace s. Therefore, if sn is the half-trace of the nth power 
of an element of A in S^CC) with half-trace s, we have 

sn = cosh(n argcosh s) = cos(n arccos s). 

This is an easy exercise in linear algebra since given A there exists an 
invertible matrix X such that 

XAX-I = (i 1 ; 6 ) . 

Because the trace is invariant under conjugation, we have 

s = cosh(ln 6) and sn = cosh(ln 6n) = cosh(n argcosh s). 

Next we need an explicit description of the zeros of the Pn' s. These are 
known (see [3] and [4], where A>in in their notation is our Pn) but our proof is 
simpler and yields an explicit expression for the values of the Pn 's [see (1.8) 
below] which is used in proving Proposition 5. 
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Proposition 3: For each integer n, the zeros of Pn are 

Sk = 2 cos(ku/\n\)} (k = 1, ..., |n| - 1). 

In particular, they are all real and distinct. 

Proof: In view of (1.2)-(b), we will suppose, in full generality, that n > 0. 
Using the easily proved identity 

(s2 - l)P„(2s) = Tn+l(s) - sTn(s), 

which defines the Pn ' s in terms of the Tn
 f s, and the trivial identities (see 

[8]) 

s = cosh(argcosh s) and Tk (cosh x) = cosh.(kx) , 
we have 

(s2 - l)Pn(2s) = sinh(argcosh s)sinh(n argcosh s). 

Upon writing s = cosh(argcosh s ) , using the standard identities for hyperbolic 
functions and using the relation (1.2)-(a) to take care of the case s = ±1, we 
obtain the following explicit formula for Pn(2s), which one will observe gives 
the value of Pn without any iteration, and hence of the matrix 

/a by 
\c dl 

without iteration: 

nsn+l if s = ±1; 

Pn(2s) = < s±nh(n a r g c o s h s) , . ( 1 « ° ) 
1 —J77 - — r^- o t h e r w i s e . 
sinh(argcosh s) 

[Note that, with s * ±1, the denominator of the lower part of (1.8) cannot be 
0, and that the value of the quotient does not depend on which value is chosen 
for argcosh s.] It follows from (1.8) that the solutions of Pn(2s) = 0 are the 
values of s for which (n argcosh s) is a multiple of i\i; these values are given 

sk = c o s ^ j , (k = 1, ..., n - 1), 

whence the result 

/kit Sk = 2sk = 2 cosf^j, (k = 1, ..., n - 1). Q.E.D. 

I t i s i n t e r e s t i n g h e r e t o c o m p a r e t h e z e r o s of \ n ± 2 w i t h t h o s e of Pn 

From ( 1 . 5 ) : 

^The z e r o s of X n " 2 : ?0 = 2 c o s 0 , Ci = 2 cos j , . . . . £n_l = 2 cos — ^ - ' 

^The z e r o s of Xn
 + 2 : ?0 = 2 c o s \* ^ l = 2 cos y , . . . , £ „ _ ! = 2 cos n ~ - V 

iThe z e r o s of Pn : Sx = 2 cos ^ , S 2 = cos -—, . . . , 5 n _ j = cos n 
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Zeros 

X3-2: 6=2, 6 =-1, & = -l 
X3 +2 : 6 = 1, 6 = -2, 6 == 1 

P3 : Si = 1, 52 = -1 

X4 - 2 : 

X4+2 : 

A : 

6 = 2, 6=o, 6 = -2, 6 = o 
6 = V% 6 = -V2, 6 = -V2, 6 = V2 
5X = V2, S2 = 0, 53 = -y/2 

FIGURE 1 

The zeros of xn + 2, xn - 2 , and Pn 

Figure 1 shows the cases n = 3 and n = 4 and illustrates the essential con-
tent of Corollary 1 below; for convenience, let us call the zeros of xn + 2 and 
Xn - 2 "small zeros" when they are strictly less than 2 in absolute value. 
Then, we clearly have the following: 

Corollary 1: 
1. The small zeros of xn + 2 and xn ~ 2 are each of multiplicity 2. 

2. The small zeros of xn + 2 and the small zeros of xn ~ 2 form two dis-
joint subsets, the union of which is the set of zeros of Pn, 
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Corollary 2: For any n € Z and for any £ * ±29 Pn does not vanish on a zero of 

Corollary 1 states something on the values of Pn at the zeros of xn - 2, 
and Corollary 2 on the values of Pn at the zeros of xn~X> with £ * ±2, If we 
agree to say that a function / separates n points z\ 9 . .., sn when /* takes n 
different values on {sl5 . .., 2n} , then Proposition 4 below completes the 
information of Corollaries 1 and 2. This proposition will be responsible for 
the fact that the nonmultiple of the identity in G^CC) has exactly n distinct 
nth roots. 

Proposition 4: For all n € Z and all.£ * ±2, Pn separates the \n\ zeros of xn ~ 
5. 

Proof: Since P_n = -Pn and X-n = Xn » w e may suppose, in all generality, that 
n > 0. The cases n = 0 and n = 1 are vacuously true because xo an<^ Xi n a v e , 
respectively, 0 and 1 zero [recall that xo (̂ ) = 2 and xi(£) = £] • Therefore, 
we suppose that n > 2. 

In order to consider the value of Pn on each of the zeros of Xn ~ £' ^et u s 

set 

. argcosh £/2 
a + 2^ = . 

n 
Saying that £ ^ ±2 means that a + hi is not a multiple of ni/n . The roots of 
Xn - £ are, after (1.5), 

Ck = 2 cosh(a + M + ^ p 1 ) (& = 0, . . . , n - 1), 

and therefore, 

M S * ) = P «( 2 cosh(a + ii +~^))-
Now, 

2/CTTi^ cosh (a + hi + ~ ^ ) * ±1, 

since the contrary would imply that a + bi Is a multiple of i\i/n. It follows 
from (1.8) that, for r = 0, ..., n - 1, 

P (? ) - slnh n(a + bi) 
s i n h a cos I 2? H + i cosh a sinlZ? H 

\ n i \ . n 1 
The denominator is the expansion of sinh(a + bi + — - — ) . 

If a * 0, then, from (1.9), Pn separates all E,r, for the denominator takes 
n different values, which are n different points on the ellipse with center 0 
going through sinh a and i cosh a. On the other hand, if a = 0, Pn cannot 
identify two £P's, for, in the case a - 0, (1.9) becomes 

sin nb 

and Pn identifying two £r
fs, say £^ and ^ (with h * k)> would imply that 

sin 12? + ) = sin (2? + ) 
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(because s i n nb * 0 by C o r o l l a r y 2 to P r o p o s i t i o n 3 ) , which would imply i n t u r n 
t h a t b i s a m u l t i p l e of ir/n, c o n t r a d i c t i n g the h y p o t h e s i s . Q.E.D. 

Proposition 5: 

(a) The set of nth roots of f j is made of all diagonal matrices f l/*)' 

where 6 is an nth root of 1, and of all matrices 

f c o s ^ + T Y A 

V Z cos ̂  - T, 
(1.10) 

where Y, Z, T,. and k satisfy the following constraints: 

(CI): T is any complex number and YZ = -[T1 + sin2 — ) 

[This means exactly that the determinant of (1.10) is 1]; 

(C2): k is even and 1 < k < n - 1. 

(b) The set of nth roots of ( in SI 2(C) is made of all diagonal 

matrices ( i/^)s where 6 is an nth root of -1, and of all matrices of 

the form (1.10) satisfying constraint (CI) above, constraint (C2) being 

replaced by constraint (C3): 

(C3): k is odd and 1 < k < n - 1. 

Proof: 

(a) Let f J be an nth root of the identity in SI2(C), and let §.= a + 6. 

By (1.3), we have 

(aP„(fi) - Pn-i(Q) &Pn(Q) \ /l 0\ (1 , n 

^ yPn(Q) &Pn(Q) - Pn-i(Q)J \0 l)' K ' J 

If PK(Q) = 0, then 3 = y = 0 and a = 1/6, which implies that a is an nth 

root of 1, and we have a root which is a diagonal matrix ( 1/£/ a s desired. 

We will therefore suppose that Pn (Q) = 0. From Proposition 3, we know that 

Q - 2 cos — for some k in {1, 2, . .., n - 1}. 
n 

It is clear from (1.11) that 3 and y obey no other constraints than aS - 3y = 
1. On the other hand, a and 6 are determined by: 

(A) a + 6.= Q; (B) Pn_l{Q)=-l. (1.12) 

Using (1.8) to work out the value of Pn_i(Q) = P„_1(2 cos ki\/n) we obtain 

. . (n - l)kui . (n - l)ki\ 
7 smh sin 

*„-! 2(cos £ ) - —^— - — t — - <-Dfc+1- (I-") 
smh sin — 

n n 
It follows from (1.12)-(B) and (1.13) that k must be even. [Remark: the con-
straint nk is even and 1 < k < n - 1" in (C2) implies that in (1.10) n > 3; 
therefore, P^ (Q) * 0 and the identity matrix has no square roots of the form 
(1.10)]. Finally, (1.12)-(A) implies that if Pn (Q) = 0 , then the diagonal of 
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(a J is of the form of the diagonal of (1.10). Moreover,' constraint (CI) is 

satisfied since ( is in SI2(C). As matrices of the form (1.10) are 

clearly ftth roots of the identity matrix (to see this, apply Proposition 1), we 
have all ftth roots of the identity with trace a zero of Pn. This completes the 
proof of (a). 

(b) The proof runs parallel to the proof of (a). The constraint (1.12)-(B) 
is to be replaced by P„ _]_(§) = 1, which, by (1.13), implies that k is odd. 

[Remark: The fact that /< is odd allows A _-, J to have infinitely many roots 

of any order in Sl2(C), as opposed to ( :M which has only two square roots in 
SI2(C).] Q.E.D. XU U 

We now hold all the necessary results to give a complete description of all 
nth roots of any element of SI 2(C). 

Theorem A: Let 

n be any positive integer, t = (a - d)/29 and x = a + d . Then the set of all 

'1 0\ 
ftth roots of A in SI2(C) is described as follows: 

Case 1. A = ±1 ) 

The nth roots of A are exactly the conjugates of L - , 1, where u is an 

root of ±1. [Remark: When A is the identity and n = 2, 

0 \ _,/! 0̂  
\0 1/ia/ ~V0 1/ 

is in the center of S?2(C) and thus has no proper conjugates; this is why the 
identity has only two square roots. Apart from this case A has infinitely many 
nth roots for each n.] 

Case 2. A is not the identity and x = 2. 

There are only one or two root(s), depending on the parity of n; this 
(these) root(s) is (are) 

^ > ( a + ( r 1 } , + (*-!))' < ^ - A ) 

where a is ±1 if n is even and +1 if n is odd. 

-1 0̂  Case 3. A * ( _^j but x 

There are no roots in SI2(C) if n is even and only one root if n is odd, in 
which case this root is 

a / n ) ( a - ( n~ 1} , {
b .A. 

v \ c d - (ft - 1) / 

Case 4. x x ± 2 -

There a r e e x a c t l y n d i s t i n c t nth r o o t s . I f we s e t 

\ik = fargcosh ? ) + 2ki\i and M 

(1.14-B) 

s i n h \ik /ft 

s i nh \±k 
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then these nth roots are A0, . .., An_l9 where 

cosh ̂  + tMk bMk \ 
A*"\ cMk coBh ̂ - t t f j - (1-U-C) 

X = x + w. 

Proof of Theorem A: 

Throughout, (^ ^ will represent an nth root of A = (a ,\ and 

Case 1. We will consider only the case of ( ), as the case A = ( ) 

follows immediately from it. We must prove that the set of conjugates of 

f „ 1/ )' w n e r e y is an nth root of 1, is the set of roots described by 

Proposition 5(a). Let us write & (for^oot) for the set described by (1.5)-(a) 

and *€ (for Conjugate) for the set of conjugates of y . ). 

First, we need a detailed description of <*f; a direct calculation yields 

( By 
ua6 - - -2a3 sinh(ln u )y 

2y6 sinh(ln u) -(3yu -'—) / 

2 + ^ ~ * 

where a6 - 3y = 1. If we use the identity 

/X + W , X ~ U 

(* 2A = ( 
\z wl \ x + w x - w 

to rewrite (1.15), we obtain 

/cosh(ln u) + T sinh(ln u) -2a3 sinn(In u) \ . 
\ 2y6 sinh(ln u) cosh(ln u) - T sinh(ln y)j (1.16) 

where r = a5 + 3y. If y = e1K^i/n, K = 0, ..., n - 1, then (1.15) becomes 

fcos + %Y sin -2a^ s m \ 
* n * ] (1 17) 

2yot s m cos - t T s i n / 
n n n l 

Matrix (1.17) characterizes the elements of ^ and entails the detailed descrip-
tion of m that we now use. 4 

We first show t h a t ^ C ^ . If K = 0, (1.17) is the identity which is tri-
vially in J5. If 1 < 2K < (n - 1) , it is trivial to show that (1.17) has the 
form (1.10) (see Proposition 5) by solving 

/cos + tF sin -2aB^ sin \ 
I n n n \ 
\ n . . . 2KTI 2KI\ . _ . 2XTT J 
\ 2y5^ sin cos - tT s m / 

' n n n ' 
^ . rn V \ 

cos — + T i \ , 
Z cos — - T I n I 

with k, T, I, Z as unknowns. Finally, if n < IK < 2(n - 1), then (1.17) is a 
matrix with inverse of the form (1.17) for a value of K for which 0 < 2K < (n -
1); since M is closed for inversion, (1.17) is in M« 
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We next show t h a t ^ C ^ f . A l l m a t r i c e s (_ _ , ) , whe \Q 1/u/ re u is an nl root of 

15 are trivially in &. Let us consider the system (1.18) with left-hand side 
as unknown (that is, K9 a, 3? y5 5 are unknown) and r set to a6 + 3y . Let us 
set K = k/2. [Note that the left-hand side of (1,18) is a typical member of ctfi 

and that the right-hand side is a typical member of M. Moreover, the left-hand 
side of (1.18) is the left-hand side of (1.15) rearranged.] 

If sin(2A:TT/n) = 0, the left-hand side of (1.18) is (±^ _?), 

( n -J occurs only if n is even and K = n/2 . 

fore, we will suppose that sln(2Ki\ /n) * 0. We wish to show that the elements 
of M of the form of the right-hand side of (1.10) are in ^, that is, that 
(1.18) s with the left-hand side as unknown, has a solution. This is achieved 
through showing that the following system has a solution, where (b) comes from 
iT = T [see (1.18)], and (C) and (D) from the nondiagonal terms of (1.18): 

vially in ^ note that 

which is tri-

There-

a) a6 - 3y 

b) a6 + 3y 
/CTT 

T + i ki\ 1 

A) a6 
2i sin —-

Tcn_ 
n 

B) 3y = 

ki\ 
n 

2i sin 
/err 
n 

C) a£ 
2i sin 

D) y<5 = 

ki\ 

2i sin 
kn 

and where 

YZ + TA + sin^ 
ki\ = 0 (Constraint CI, Proposition 5), 

The subsystem (A, B, C) has the following solution in terms of a; 

-Y 
0 . . kn 2a% s m — 

n 
-a (T kn\ (T - i sin £) 

T + i sin 
ki\ 

2ai sin kit 

(1-19) 

Note that, if Y = 0, we may use (D) to express y in terms of a, since Y = Z = 

0 is possibly only when (1.18) is (^ . j, a case which is trivially in <tf; 

therefore, we assume that \Y \ + \z\ * 0 and, without loss of generality, that 

Y * ••] Constraint 

YZ + Tl + s i n / feir 
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precisely means that the solutions (1.19) are' compatiblewith (D). Case 1 has 
thus been established. 

Case 2. A is not the identity but x = 2.. 

Then, by ( 1 . 2 ) , 

ia b\ = (xPn(X) - P n _ i ( x ) yPniJO. \ n ? m 
\c d) \ zPn(X) wPn(X) - Pn-l(X))' U ° Z U ; 

The Mobius transformation defined by ( -,) in PSl2(C) ("The projective special 

linear group of degree 2 over C") has a unique fixed point as x = 2 (see [5]); 

therefore, the one defined by ( ^ ), the nth iteration of which is ( 7 ) , has 
J \z wl \c d! 

also a unique fixed point; thus, we have X = ±2. On the other hand, 
Xn(-2) = -2 if n is odd, 

as is easily checked. From x (X) = x = 2, we see that in the case where n is 
odd we must have X = 2. Therefore, from (1.20) and 

dd 
even 

p ( + 2 ) = n(+1)n+i = J n if n is o 
" U j U i ; \±rc if n is e 

/nx - (n - 1) nz/ \ 
\ ns nw - {n - I)) 

- in - 1) ±m/ 
±nz ±nw - (n .») 

if n if odd, 

if n is even. 

Solving then for x, y9 zy w in terms of a, 2?, c, d yields 

ix y\ = 
\Z Wl 

c d + (n - 1)) 
a + (n - 1) 2? 

c J + (n - 1)) 

which is exactly (1.14-A). 

(-1 0\ 

if n is odd, 

if n is even, 

Case 3. A * ( _:) but x - 2. 

As in Case 2, we must have J = ±2; however, since 

X„(±2) - 2(±1)"+1 = X. 

we must have X = -2 and n odd. Moreover, we then have 

Pn(X) = w and Pn_i(Z) = -(n - 1). 
The result follows immediately from (1.20). 

Case 4. x * ±2. 

X is a zero of xn ~ X> saY (see Proposition 2), 

v r o u a rgcosh(X/2) + 2ki\i 0 a r ccos (X/2 ) + 2/CTT f. 0 1 . 
2 = £, = 2 c o s h — - —-— = 2 cos ; (1 .21) 

••«• n n . 

consequen t ly , from 
(x yy = (xPn(X) - P n - i U ) 2 / ^ 0 0 \ (a b\ 
\z wl \ zPn(X) wPn(X) - Pn_l{X)) \c d) 

we obtain the following possibilities for ( ^ ) : 
fo F \z Wl 
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( 'a + Pn-lttk) b \ 

pnu ) p„afc) \ a 22 ) 
, pnak) p„ak) / 

[(1.22) uses tacitly Corollary 2 of Proposition 3 in using P (£ ) in the denom-
inator.] We first show that each of the n matrices defined by (1.22), (k = 0, 
• .-, n - 1), is an nth root of 4 in SI 2(C) (see Lemma 1 below). Then we show 
that these matrices are all different (see Lemma 4 below, which requires Lemmas 
2 and 3). 

Lemma 1: xkwk - ykzk = 1 [the possible values of (̂  ^) obtained from Proposi-

tion 2 are all in SI 2(C). 
Proof: Let us set 

= argcosh(X/2) + 2ki\i 
n 

Then 

— = _£i5—?L b y (ls8) a n d (1.22), and % = cosh u by (1.22), 
Pn(Zk) sinh nu 

tfliich gives 
sinh u 

^cosh u + t 
sinh nu 

sinh u 
sinh nu 

Therefore, 

cosh u 

sinh 
sinh 

1 - t 

2 

u 
nu 
sinh 
sinh 

u 
nu 

o _ Ox sinhzu 
^Wj, - 2/7,37, = cosh^u - (2?£ + t ) —«—» 
* * * * sinhznu 

but 2 _ 4 ^ /x x2 
2?£ + t2 = be + = ("?) "' 1 = c o s n n^ - 1 = sinh2nu, 

whence the result. This completes the proof of Lemma 1. 

Lemma 2: xk + yk = ik. 
Proof: From (1.22), we have 

X+2Pw.1(gfc) 

But (see the Remark following Proposition 2), 

^ + yk - „ " : * d-23) 

X 2 ^ ( c o s h ( a r g C O S h ( ^ 2 ) + 2 ^ ) ) = 2Tn&); 

therefore, from (1.6), we have 

x = p„+i(ek) - pn-iteO> 
which, by definition (1„1), gives 

x = ' 5 k p n a k ) - 2 P n . 1 ( e k ) . 
Substituting this value of X into (1.23) yields the result and completes the 
proof of Lemma 2. 
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Lemma 3: (** M - (̂ /2,+ */*»«*> f ,b'P»(,%) „ ,) (Recall: t - *-=-*). 

Proof: From (1.22) and Lemma 2, we have the linear system 

2* 
Wj. = 

the solution of which is the required result; thus, Lemma 3 is proved. 

Lemma 4: The matrices ( k ^k) {k = 0, ..., n - 1) are all different. 
\zk wk) 

Proof: This is simply a consequence of Lemma 3 and Proposition 4, "since Pn 
separates the £fcfs. This completes the proof of Lemma 4, and Theorem 4 has 
thus been proved. Q.E.D. 

Remark: The denominator of Mk [see (1.14-C)], which is sinh \iks with 

\ik = argcosh -̂  + 2kui, 

does not depend on A: because, if we set s = x/2* we have 

sinh \ik = ±vsz - 1, 

where the sign is chosen so as to agree with the principal value of argcosh s; 
note that Mk does not depend on the choice of this principal value. 

In the same fashion, we have 

sinh —&• = ±/s7
2 - 1 

for the numerator of Mk when we set sk = cosh(yfc/n). Thus, we have 

Mk = ±/s2 - l//s2 - 1, 

and, clearly, only the numerator of this expression depends on L 

Roots in Gl2 (C) 

Let us conclude with the computation of roots in G^CC). For 

let 6 be one of the two square roots of det A; we will write 6+ for 6, 6_ for 
-6, A + for A/6+ and A. for /l/6_ . Clearly, A+ and A_ are in SI2(C). 

We first observe that the nth roots of ̂  in G^CC) are elements of §B with: 
an nth root of 6+ and 5 an nth root of A+} 

or i. (2.1) 
an nth root of 6_ and 5 an nth root of J4_) 

It is clear that an element §B is an nth root of A, for 

($5)n = §nBn = ̂  or > = A. 
(6_i4_ 

Conversely, all nth roots of A are of this form, for let ( • be an nth root 

of A and x be one of the two square roots of (xu) - yz)\ then 
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A = (x y)n = Tn(x/T y/T\n 

\z w) \Z/T W/T ) 
from which we get 

d/T)»4 = (x'x y'x)n. 
\Z/T W/T) 

The determinant of the right-hand side being 
ixw - yz\n 
\ 72 ) - x> 

we have that Tn = 6±; thus, 

/ * y\ = ixh yh\ 
\z w) \Z/T W/T) 

is of the form $5. 
To obtain all nth roots of A, we shall compute all products §B with $ and B 

satisfying (2.1); note that, since A+ and A_ are in SI2(C)* Theorem A gives all 
possible B!s. Let us agree that 6 is one of the square roots of (ad - be) for 
which (R Tr A+) > 0. 

We first suppose that A is not a multiple of the identity. We consider 
separately three cases: 

Case A. Tr A+ = 2 and n is even (say n = 2k). By Case 2 of Theorem A, A+ 
has two roots in SI2(C) which are of opposite signs [see (1.14-A)]; on the 
other hand, the roots $ of 6+ come in pairs with opposite signs and there are 
2k of them. If $]_, . .., $̂ » ~®l » •••> ~®k a r e the n possible values for $ and 
AQ and -AQ are two roots of A+5 then the set 

{$1, ..., §k, -$1, ..., -<^}U0> ~^0> (2.2) 

contains n elements. 
On the other hand, A. has no nth root (see Case 3 of Theorem A); thus, in 

this case the products of the form 

(a root of 6_)(a root of A.) (2.3) 

contribute nothing. A_ has therefore altogether n distinct nth roots and these 
are the elements of the set (2.2). 

Case B. Tr A+ = 2 and n is odd. 

Each of A+ and A. has exactly one nth root in SI2(C) (Cases 2 and 3 of The-
orem A), namely: 

rru +- * A A l(a/6+ + (n - I) b/6+ 
The root of A+: A0 = -( Q/^ d/^+ + £ 

The root of A.: = _l/a/6_ - (n - 1) b/6. \ 
n\ e/6. d/6. - (n - 1)/ 

(since 6+ = -6_ , these two roots are- of opposite signs). If r = |6| and 0 is 
the argument of 6+, then the nth roots of 6+ and 6_ are 

for 6+: re^9^{a0, ..., an_x}, 

for 6_ : re*<e + ir>/n{a0, ..., a ^ } , 

where a0, ..., a _j are the n nth roots of 1. Note that the second set is the 
first set multiplied by -1. Therefore, the nth roots of A form the union of 
the following two sets: 
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X2 = reWn{-oQ, ..., - a ^ . ^ H o ) 

Clearly, Z]_ = A'2 anc^ their union contains exactly n elements. 

Case C. Tr A+ * 2. 

Let ag, ...s a _]_ be the n nth roots of 1, and let B be one of the n nth 

roots of A+ [see Case 4 of Theorem As (1.14)-C)]. Then OQB9 . ,., an_]_5 are all 
distinct and each of them is an nth root of A+ since (akB)n = Bn = A+, It fol-
lows from Theorem A, Case 4, that 0"Q5, . .., an 5 are the n roots of A+ , and 
therefore that the set of elements of the form 

(a root of 5 + ) (a root of ,4+) (2.4) 

is, using the notation of Case B, 

p ^ e / ? 2 { a 0 s mmmf an_l}{o0Bs . . . , a n _ 1 5 } , 

which i s the s e t 
reietnio0B, . . . , On-iB}; " (2 .5 ) 

this set contains n elements. 
If a is any nth root of -1, a similar argument yields 

re^/n{ooQ, ..., aan_1}{aa05, .. . ., ac^.^} 

for the set of elements of the form (2.3). This is 

reiQ/n o2{o0,, ..., an_!}{a0S, ..., an_x5}, 

which contains exactly n distinct elements. Now, since a is an nth root of -1, 
o2 is an nth root of 1; then o2 is one of OQ, -.., crn-i, which implies that the 
set of elements of the form (2.3) is described by (2.5), which is already the 
set of elements of the form (2.4). Therefore, A has exactly n distinct nth 

roots in Gl2(C) . 

The case when A is a (nonzero) multiple of the identity is immediate; A has 

infinitely many nth roots, for if A = f L then A = -al n iK an^ ( i) 

has infinitely many nth roots for each n (see Theorem A, Case 1). Hence, we 
have proved the following theorem, which is our conclusion. 

Theorem B: Let A be in CI2(C). 

a) If A is a nonzero multiple of I J, then A has infinitely 

many nth roots; 

b) If A Is not a multiple of I 1, then A has exactly n dis-

tinct nth roots. They are of the form W satisfying (2.1). 
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Appendix 

Polynomials Pn and xn
 f o r 2 - n - 2 0 

n 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Xn 

X 

x 2-

x 2-
x 3-

x 3-
x 4-

x -
x 5-

x5-
x6-

x6-
x7 -

7 X -

x8-

x8-
x9-

x9-
xi0 

x10 

x11 

x11 

x12 

x12 

x13 

x13 

x14 

x14 

x1B 

x16 

x16 

x18 

x17 

x1T 

x18 

x18 

x19 

x19 

x20 

2 

-1 
3x 

2x 
- 4x2 + 2 

3x2 + 1 
- 5x3 + 5x 

-4x3 +3x 
- 6x4 4- 9x2 - 2 

- 5x4 + 6x2 - 1 
- 7x5 + 14x3 - 7x 

- 6x5 + 10x3 - 4x 
- 8x6 + 20x4 - 16x2 + 2 

-7xs + 15x4 -10x2 + 1 
-9x7 + 27x5 -30x3 +9x 

-8x7 + 21x5 - 20x3 +5x 
- 10x8 + 35x6 - 50x4 + 25x2 - 2 

- 9x8 + 28x6 - 35x4 + 15x2 - 1 
- llx9 + 44x7 - 77x5 + 55x3 - llx 

- 10x9 -f 36x7 - 56xB + 35x3 - 6x 
- 12xxo + 54x8 - 112x6 + 105x4 - 36x2 + 2 

- llx10 + 45x8 - 84z6 + 70x4 - 21x2 4- 1 
- 13X11 + 65x9 - 156x7 + 182x5 - 91x3 4- 13x 

- 12xu 4- 55x9 - 120x7 4- 126x5 - 56x3 4- 7x 
- 14x12 4- 77x10 - 210x8 4- 294x6 - 196x4 4- 49x2 - 2 

- 13x12 4- 66x10 - 165x8 4- 210x8 - 126x4 4- 28s2 - 1 
- 15x13 4- 90X11 - 275x9 4- 450x7 - 378x5 4- 140x3 - 15x 

- 14x13 4- 78xu - 220x9 4- 330xT - 252xB 4- 84x3 - 8x 
- 16x14 4- 104x12 - 352x10 4- 660x8 - 672x8 4- 336x4 - 64x2 4- 2 

- 15x14 4- 91x12 - 286x10 4- 495x8 - 462x8 4- 210x4 - 36x2 4- 1 
- 17xls 4- 119x13 - 442X11 + 935x9 - 1122x7 4- 714xB - 204x3 4- 17s 

- 16x1B 4- 105x13 - 364X11 4- 715x9 - 792x7 4- 462x5 - 120x3 4- 9x 
- 18z16 4- 135x14 - 546x12 4- 1287x10 - 1782x8 4- 1386x6 - 540x4 4- 81x2 - 2 

- 17x18 4- 120x14 - 455x12 4- lOOlx10 - 1287x8 - 924x6 - 330x4 4- 45x2 - 1 
- 19x17 4- 152x16 - 665x13 4- 1729xu - 2717x9 4- 2508x7 - 1254x5 4- 285x3 - 19x 

- 18x17 4- 136r16 - 560x13 4- 1365X11 - 2002x9 4- 1716x7 - 792xB + 165x3 - lOx 
- 20x18 4- 170x16 - 800x14 + 2275x12 - 4004x10 4- 4290x8 - 2640x6 + 825x4 - 100x2 4-2 
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