
CHARACTERIZATIONS OF THREE TYPES OF COMPLETENESS 

Eric Sch lsse l 
30 Entrance Rd., Roslyn, NY 11577 

(Submitted September 1987) 

Introduction 

A sequence is complete if every positive integer is a sum of distinct terms 
of the sequence [1, 3]. In this paper I discuss and characterize this defini-
tion and two definitions that generalize it. 

In Section 1, I give several examples of complete sequences. Section 2 
describes how a theorem due to Brown & Weiss [1] can be used to characterize 
the complete sequences. In Section 3, Weak completeness [3] is defined, a 
sufficient condition for a sequence to be weakly complete is given and, 
finally, a condition equivalent to weak completeness is presented. 

In Section 4, the concept of completability is introduced. Several condi-
tions which imply the completability of a sequence are described. A theorem 
characterizing the completable sequences is proved, and it is used to find an 
infinite noncompletable sequence. The relations between the concepts of "com-
pleteness" discussed are described. 

1. Sequences and Completeness 

A sequence is a collection of numbers in one-to-one correspondence with the 
positive integers. Since only sequences of nonnegative integers are con-
sidered in this paper, the word "number" will be understood to refer to a non-
negative integer, and the word "sequence" will refer only to sequences of such 
numbers. 

Definition 1: A sequence f is complete [3] if every natural number is a sum of 
one or more distinct terms of the sequence. 

Erdos & Graham [2] mean, by a complete sequence, a sequence such that every 
sufficiently large natural number is a sum of distinct terms of the sequence. 
We will not use "complete" in this sense. 

Clearly, the sequence {ft} = {1, 2, 3, 4, 5, ...} is complete. However, 
there exist infinitely many other complete sequences. For example, the 
sequence {1, 2, 3, 4, 8, 12, 16, 20, 24, 28, ...} is complete. This follows 
from our ability to represent each positive integer in mod 4. A similar 
sequence may be obtained from any number m > 1, by appending the numbers from 1 
to m - 1 to the multiples of m. As we see in the following example, any 
sequence constructed in a similar manner is complete. 

Example 1: Let m be a natural number. Then the sequence f9 where 

r>, N ( (n - m + 1);77, if n > m, 
f(n) = < . , - • , 

J \ n , if 1 < ft < 777 

is complete. 
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Proof: Let n be a natural number, and let v be its least residue mod nn If 
r = 0, then n is a term of /. If r * 0, then n - r is a multiple of m. If 
n - v = 0, then, once again, n is a term of /; otherwise, n is a sum of dis-
tinct terms of f9 namely n - v and r. 

The Fibonacci sequence {1, I, 2, 3, 5, 8, . ..} = f\3 \ is an example of a 
complete sequence [3]. In this sequence, 

fl, i(D = 1, fi, i(2) = 1, and 

A, l(w) = /1, i(n - 1) + flf !<> - 2) if' rc > 3. 

Consider the class of all sequences / that satisfy the recurrence relation 

fin) = f{n - 1) + f(n - 2) if n > 3. (R) 

The sequences in this class have only two degrees of freedom, since, given 
the first two terms, the recurrence relation (R) determines all remaining 
terms. Any ordered pair of whole numbers can be the first two terms of a 
sequence satisfying (R) . The class of these sequences is countably infinite, 
but any illusions we might have that an infinite number of them are complete 
are shattered by Proposition I which follows. But first, a definition: 

Definition 2: Suppose fitJ-(l) = i , fii3-(2) = j\ and that fit j satisfies (R).' 
Then /^ - is called the Fibonacci sequence beginning with i and j. 

Proposition 1: The Fibonacci sequence beginning with i and j is complete if and 
only if (i, j) is one of the pairs (0, 1), (i, 0), (1, 1), (1, 2), (2, 1). 

Proof: ("If" part.) Parallels exactly the proof that f. , is complete. 

("Only if" part.) Let / be the Fibonacci sequence beginning with i and 
j. Suppose f is complete. It is easily seen that 1 must be one of the first 
two terms of /. If i = 1 and j > 2, then 2 is not a sum of distinct terms of 
f. If j = 1 and i > 2, then 2 Is, again, not a sum* So if / is complete, then 
(i, j) Is one of the pairs (0, I), (1, 0), (1, 1), (1, 2), (2, 1). 

In the next section, we shall derive a characterization of the complete 
sequences. 

2S Brown's Criterion and Its Use in Characterizing 

All Complete Sequences 

Of the three sequences {ln_1}, {2n_1}, and {3""1}, the first two are com-
plete, and the third Is not, the following relations are true for all natural 
numbers nt 

lw < 1 + £ l*"1, 2n - 1 + £ 2i"1, and 3n > 1 + £ 3*"1. 
i = 1 i = 1 i = 1 

These data suggest that a sequence f may be complete iff, for all p > 1, 

f(P +1) < 1 + £ / ( i ) . 
i = l 

A counterexample shows that this is not so: If f is the complete sequence 
{8, 4, 2, 1, 16, 32, 64, 128, ..., 2n"1, . ..}, then the inequality is false for 
some p. For Instance, f(2) = 4, even though 1 + /(I) = 2, The important 
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difference between the sequences {ln_1}? {2n_1}, and {3n-1}5 and the sequence 
{8, 4, 2, 1, 16, . ..} is that the first three sequences are nondecreasing, 
while the fourth is not. The following theorem about nondecreasing sequences 
with first term 1 can be used to characterize all complete sequences. The 
theorem is known as "Brown's criterion'5 since it was first proved by Brown & 
Weiss [ 1 ] . 

Brown's Criterion: If f is a nondecreasing sequences and if /(I) = 1, then f 
is complete iff, for all p > 1, 

f(P + l) < i + £/(£). 
i = i 

Let / be any sequence. If f is finite, then f is not complete. If f is 
infinite but contains no 1, then it is not complete, since 1 is not represent-
able. If f is infinite and contains a 1, then it is either nondecreasing or 
not. Suppose f is not nondecreasing. Either there is a term that occurs 
infinitely often in the sequence, or there is not. If there is not, then, 
without affecting its completeness, the terms of the sequence can be rearranged 
so that it is nondecreasing. Suppose there is a term of the sequence f that 
repeats infinitely often. The following theorem will show that there is a 
nondecreasing sequence g that is complete if and only if f is. 

Theorem 1: Let the sequence / contain a term which is repeated infinitely 
often. Then there is a sequence g that is nondecreasing and which is complete 
if and only if / is. 

Proof (and construction) : Suppose the value of the least term, in magnitude, 
that repeats infinitely often is k. If there is no term of f greater than k, 
then the terms of / less than k can be reordered, and the term k (infinitely 
repeated) tacked on to the end, to obtain the sequence g. By this procedure, 
{5, 4, 3, 2, 6, 6, 1, 6, ...} can be turned into {1, 2, 3, 4, 5, 6, 6, ...}. 

If there are terms greater than k9 then we show that the removal of all 
terms of f that are greater than k will not affect its completeness. First, 
note that the removal of terms from a sequence that is not complete cannot 
render the sequence complete; so all that must be proved is that, if the 
sequence / is complete prior to the removal of all terms greater than k9 it 
will remain complete. 

Suppose / is complete and all such terms are removed. Let n be a natural 
number. If n < k3 then n is a sum of distinct terms of the original sequence 
none of which is greater than ks so it is a sum of distinct terms of the new 
sequence. If n is greater than k, then n is the sum of a multiple of k and a 
nonnegative integer less than k, that is, 

n = ak + P, where 0 < r < k. 

If v = 0, then, since k is infinitely repeated, n is a sum of distinct 
terms of the new sequence. If r * 0, then ak is the sum of distinct terms k5 
while i5 is a sum of distinct terms all less than k. So n is the sum of 
distinct terms of the new sequence. The cases have been exhausted; thus, the 
new sequence is complete if the original sequence is complete. 

Hence, there is no loss of generality in assuming that no term of / is 
greater than ks since all such terms can be dropped3 and the resulting sequence 
can be reordered into a nondecreasing sequence, as described above. 

So we may assume, without loss of generality, that / is nondecreasing. If 
/ contains zeros, they can be removed, again without affecting completeness, so 
assume / contains no zeros. Brown's criterion may immediately be applied to 
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decide whether / is complete—for, since f contains a 1 but no zeros, /(l) must 
be 1. 

Briefly, then, the procedure for testing a sequence f for completeness is 
as follows: 

i) If / is finite, or if / contains no 1, then / is not complete. 

ii) If some number occurs infinitely often in the sequence f, then remove all 
terms of f that are greater than the least term so repeated, if any terms 
greater than the least term do exist. 

iii) If f is not nondecreasing, then reorder it so that it is. Do not remove 
any nonzero terms of the sequence to accomplish this. 

iv) If / contains any zeros, remove them, since a sum of distinct integers 
containing zeros clearly is still a sum of distinct integers. 

v) Prove or disprove that the inequality 

/ ( P + i) ^ i + £ fW 
i = l 

holds for all p > 1. 

The complete sequences have been characterized! 

The limitation of completeness, as a mathematical statement of the intui-
tive idea of the "richness" of a sequence, is not one of undue generality but, 
rather, is a failure to include sequences which are so "nearly complete," or 
which are so easily "turned into complete sequences," that to call them 
"incomplete" seems little more than nitpicking. For example, the sequences 
{2, 3, 4, 5, 6, ...} and {2, 2, 4, 6, 10, 16, ...} are not complete, although 
every integer > 2 is a sum of distinct terms of the first sequence, and 
although the sequence {1, 2, 2, 4, 6, 10, . . . } , obtained by appending a 1 to 
the second sequence, is complete. 

3. Weak Completeness 

Definition 3: A sequence f is weakly complete [3] if a positive integer n exists 
such that every integer greater than n is a sum of distinct terms of f. Erdos 
& Graham [2] call such sequences complete. 

A complete sequence is weakly complete. The sequence f(n) = n + 1, to give 
a trivial example, is weakly complete but not complete. The following theorem 
specifies a condition implying weak completeness. 

Theorem 2: A sequence / is weakly complete if a positive integer n and a real 
number s > 2 exist such that: 

i) If x > n , then there is a term of the sequence strictly between x and 
(2 - 2/s)xs and 

ii) every integer between n and sn (inclusive) is a sum of distinct terms 
of the sequence. 

Proof: By strong induction. Given an integer w > sns we must show that w is a 
sum of distinct terms of the sequence. Let our induction hypothesis be that 
every integer inclusively between n and w - 1 is a sum of distinct terms of f. 
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There e x i s t s a term of the sequence , f(t)9 s t r i c t l y between w/2 and 
(1 - 1/s)w, by h y p o t h e s i s i ) . Let 

m = w - f{t). 
Then 777 < w/2, and m > w/s > n. Since n < m < w/2, m is a sum of distinct terms 
of /; and, since 777 < w/2 < f{t), none of these distinct terms equals f (t) . 
Since w = m + fit), w is a sum of distinct terms of f. By strong induction, 
the theorem is proved. 

The two properties i) and ii) are not necessary for weak completeness. In 
particular, the function f(n) = 2n~l fails condition i) for all positive n and 
real s > 2. The sequence f(n) is nevertheless complete. (I am obliged to the 
referee for this example.) The sequence f(n) - n + 1, on the other hand, 
satisfies i) and ii) for suitable s and n, and yet is incomplete. Thus, 
conditions i) and ii) are sufficient, but not necessary, for weak completeness, 
and are neither sufficient nor necessary for completeness. 

The following examples of sequences which fail to be weakly complete show 
that this concept is not too broad. 

Example 2: The Fibonacci sequence beginning with 2 and 2 is not weakly com-
plete; neither is {2n}. 

Proof: Let f be either of these sequences. Any term fin) is even, so any sum 
of distinct terms of f is even. No matter how large n > 0 is chosen, 2n + 1 is 
greater than n and is not a sum of distinct terms of /. 

If any two terms of the Fibonacci sequence fi 1 are replaced by zeros, the 
resulting sequence is not weakly complete. A proof of this can be found in 
[3]. Thus, the Fibonacci sequence beginning with 2 and 3 is not weakly 
complete. 

Definition 4: A sequence / is finite if a number n exists such that, for all 
natural numbers m > n, f (n) = 0. A sequence is infinite iff it is not finite. 
An infinite sequence / is increasing if, for any two natural numbers 777 and n 
such that rn > n, f(m) > f(n). 

Definition 5: Let / be weakly complete. Then the greatest integer which is not 
a sum of distinct terms of / is called the threshold (of completeness) of /. 
Erdos & Graham [2] use the term "threshold" as well, but may not mean the same 
thing by it. 

Theorem 3: The following conditions on a sequence f are equivalent. 

a) Every infinite increasing sequence contains a term that is a sum of 
distinct terms of f . -

b) Every infinite increasing sequence contains a subsequence each of whose 
terms is a sum of distinct terms of f. 

•c) f is weakly complete. 

Proof: c) -> b) . Suppose c) holds. Let an infinite increasing sequence h be 
given. Then, if (̂777) is the least term of In greater than T, the threshold of 
/, then g(n) = h(n + m) defines a subsequence of h each of whose terms IS a SUE 
of distinct terms of f. 

b) -> a) . Obvious. 
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a) ->- c) . If f were not weakly complete, then the sequence of numbers 
that are not sums of distinct terms of / would form an infinite increasing 
sequence containing no sum of distinct terms of f, so a) would not be true. 
So, if a) holds, then c) holds. 

(I am obliged to the referee for suggestions which shortened this proof.) 

4. Completability 

The sequence {2, 2, 4, 6, 10, 16, 26, 42, 68, ...} is not weakly complete, 
even though it is "sufficiently rich" that the mere attachment of a 1 to this 
sequence renders it complete. This suggests the definition of a third, very 
general sort of completeness, called completability, such that a completable 
sequence becomes complete after a suitable finite sequence is prefixed to it, 
that is, attached to it at its beginning. 

Definition 6: Suppose f is a sequence, and J is a finite sequence. If I(ji) = 0 
for all n, then define the result of prefixing I to f to be f. Otherwise, if m 
is a natural number such that I{m) is nonzero and, if n > m, I(ji) - 0, then 
define the result of prefixing I to f as the sequence h such that h(n) = I(ji) 
if n < m, and h{n) = fin - m) if n > m* 

The formal tools are now available with which to define completability: 

Definition 7: A sequence / is completable if there exists a finite sequence I 
such that the result of prefixing I to / is complete. 

Note that the completability of a sequence is not affected by the removal 
or prefixing of a finite number of terms from or to the sequence. 

Theorem 4: A weakly complete sequence is completable. 

Proof: Let / be weakly complete, and let T be its threshold (see Definition 5). 
Define the sequence I by letting 

I(n) = n if n < T and I in) = 0 if n > T. 
Then I is finite, and the result of prefixing I to f Is complete. 

The following two theorems derive sufficient conditions that a sequence be 
completable. 

Theorem 5: Let f be a sequence. If a positive integer n and a real number v 
strictly between 1 and 2 exist such that, if x > n, there is a term of / 
strictly between x and vx9 then / is completable. 

Proof: Let s = 2/(2 - v). Then v = 2 - 2/s, and s > 2. Define the sequence I 
to contain the integers between n and sn, inclusive, in numerical order, 
followed by zeros. The sequence I is finite. Let In be the result of prefixing 
I to /. If h is weakly complete, then it is completable by Theorem 4; hence, / 
is completable. Theorem 2 now applies: Our s is the s of that theorem. 

The preceding theorem can be used to show that if f is a sequence, and if 
there exists a real number v strictly between 1 and 2 such that, for all suffi-
ciently large n9 

fin) < f{n + 1) < vf(n), 
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then f i s comple t ab l e . I f V i s g r e a t e r than 2 and the r i g h t - h a n d i n e q u a l i t y i s 
r e v e r s e d , i . e . , i f 

fin + 1) > vf{n) 
for all sufficiently large n, then / is not completable. This will be shown in 
Theorem 9. 

Theorem 6: Let / be a sequence. Suppose there is a natural number rn > 1 such 
that all but a finite number (possibly zero) of terms of f are divisible by m. 
Suppose, in addition, that the sequence I defined by 

I(n\ = f(n + s) /m, 

where f(s) is the last term of / that is not divisible by m, is complete. Then 
/ is completable. 

Proof: If there is a term of f not divisible by 777, let r be the largest; if 
every term of f is divisible by m, let r = 0. Let 

h(n) = n if n < m5 

h(n) = 0 otherwise, 

and let the sequence j be the result of prefixing the finite sequence In to f. 
We obtain that j is complete by a similar argument to that of the proof of 
Theorem 1. 

Counterexample: The converse to Theorem 6 is false: there exists a complet-
able sequence any two consecutive terms of which are relatively prime. 

Let / be the Fibonacci sequence whose first two terms are 2 and 3. Then f 
is completable because the result of prefixing the finite sequence h 
defined by h(l) = 1, h(2) = 1, and h(n) = 0 if n > 2, is complete. 

This shows that Theorem 6 does not characterize the completable sequences. 

Theorem 6 proves that completable sequences can be obtained by multiplying 
every term of a complete sequence by a constant and prefixing some finite 
number, possibly zero, of terms. It is also true that, if every term of a 
weakly complete sequence is multiplied by a constant and a finite sequence is 
then prefixed, the result is completable (replace m by 777 + T9 where T is the 
threshold of the weakly complete sequence, in the proof of Theorem 6). The 
concept of completability is certainly not restrictive. There is now the 
problem of proving that it is not too general—that the class of completable 
sequences does not coincide with the class of sequences. This will be done in 
the next four theorems. 

Definition 8: Let f be a sequence. Then P(f) is the set of all natural numbers 
that are sums of distinct terms of f. This notation is due to Erdos & Graham 
[2]. 

It follows from this definition that a sequence / is complete iff P(f) = N. 
Similarly, a sequence / is weakly complete iff P(f) is cofinite (i.e., iff its 
complement in I is a finite set). 

Theorem 7: A sequence f is completable iff there exists a positive integer c 
such that, if q is greater than c and is not in P(f) , then there exists a 
number 777 in P(f) such that 0 .< q - m < c. 
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Proof: ("Only if" part.) If f is weakly complete, then upon choosing c to be 
the threshold of /, the theorem follows trivially. Suppose f is eompletable 
but not weakly complete. If J is a finite sequence such that the result of 
prefixing I to f is complete, then let c be the maximum element of P(I) . 
Suppose q is greater than c and not in P (f) . Then q is the sum of distinct 
terms of I and distinct terms of f. Let the distinct terms in this sum from f, 
taken by themselves, have the sum m. The distinct terms in this sum from I are 
greater than zero, but cannot exceed c. However, q is the sum of m and these 
distinct terms of J, so m < q < m + e. This implies 0 < q - m < c. 

("If" part.) If I is the finite sequence consisting of c ones followed 
by zeros, then prefixing I to f we obtain a sequence g. Let q be a natural 
number. If q < c, then q is the sum of q ones from X. If q > c, then either q 
is in P{f) or is not. If q is not in P{f) , then there is m in P(f) with 
0 < q - m < c, and q is the sum of m in P(f) and q - m in P(I) . The terms 
whose sums are m and q - m> respectively, do not overlap because the terms of I 
precede the terms of / in the sequence. So every natural number is a sum of 
distinct terms of g. Thus, / is eompletable. 

It follows from Theorem 7 that an infinite sequence f is complete iff the 
sequence h, defined by h{n) = nth term of P(f) in order of magnitude, has the 
property that the difference between consecutive terms of h9 h(ji + 1) - h(n), 
is a function of n that is bounded from above. 

Theorem 7 is a necessary and sufficient condition that a sequence f be eom-
pletable. The following theorem applies the contrapositive of the "only if" 
part of Theorem 7 to obtain a condition that a sequence not be eompletable. 

Definition 9: A sequence f is super-increasing if the quantity 

fw -nE fw 
• i = 1 

is positive for all sufficiently large n. [Note that superincreasing sequences 
are increasing for n sufficiently large.] 

Theorem 8: Let f be a superincreasing sequence. Suppose 

i = 1 

is unbounded from above. Then f is not eompletable. 

Proof: Suppose the condition of Theorem 7 held. Then there would exist a num-
ber c such that, if n were greater than c and not in P(f) , there would exist 777 
in P(f) such that 0 < n - m < c. For all positive integers c, we will exhibit 
t > c which is not in P (f) and such that, if 777 is in P(f) and is less than t, 
c + 777 is also less than £, so that the sequence / cannot satisfy the necessary 
condition of Theorem 7. 

Let c > 0 be given. By hypothesis, there are infinitely many n such that 

fM ^Y, fH) > c + 1. 
i = 1 

Choose any such n9 and define t = f(n) - 1. Then: 

a) t is not in P(f). 
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For suppose t were in P(f) . Then t^ and v would e x i s t such t h a t 

v 
t = E f^i)* f o r a 1 1 ^ > ^ i < ^3 

i = 1 

since t < fin) and / is increasing beyond the nth term. This implies that t , 
the sum of the terms f(t^) can be no greater than the sum of all terms up to 
the (ft - l)th , that is, 

n-l 

i = l 
and so 

* = E / W * *E /.(*) < /(*) - ^ - i = t - ^ < t s 
i = 1 £ = 1 

which is impossible. 

b) t > c. 

Since 

fin) -n^fd) - 1 > c, 
i = l 

and since t = fin) - 1, 

n- l 
* > E fW + e > c. 

i = l 

c) If 772 is in P(f) and m < t, then 777 + c < t . 

Since m < t, m < /(ft). Since m is in P(f), m is a sum of distinct terms of 
/, and since 777 < /(ft) this sum can be no greater than 

n-l 

i = l 
So 

n-l 
0 + 1 < fin) - £ /(i) < fin) - m; 

i = 1 
hence, 

n-l 
c < t - E /(^) ^ t - m and 777 + e < t . 

i = l 
Theorem 9: Let f he a sequence. Suppose there exists a real number v > 2 such 
that, for all sufficiently large ft, 

f(n + 1) > vfin). 
Then / i s not comple t ab l e . 

Proof: Let 

M«) = fin) -nj2 f^) in > 2) . 
i = 1 

Suppose ft is sufficiently large such that, for all T > n, 

fir + 1) > y/(r). 

1989] 417 



CHARACTERIZATIONS OF THREE TYPES OF COMPLETENESS 

Since, 

f(r + 1) > 2/(r), 

f(r + 1) - f(r) > f{v); 
thus, subtracting 

r- 1 

i = 1 

from both sides, we obtain 

h(r + 1) > h(r) for all v > n. 

We will show that the function In satisfies the condition of Theorem 8; that 
is, ft(p) is positive for sufficiently large p and unbounded from above. 

Since 

h(r + 1) > h(r) + 1 

for all p > ft, it is true by induction that 

ln{v + m) ^ h(v) + m for all rn > 1 and v > n. 

Let z = h(n). If 2 > 0, then h(r) is positive for all p > ft; so suppose z < 0. 
Then, If m > ~z, 

h(n + m) > h(n) + m > h(n) - z = 0, 

so, if r > rz - z, h{v) > 0. Thus, in any case, h(r) is positive for all suffi-
ciently large r. 

Suppose h(r) is bounded above by w, for all p. Again, let z = h(n) . Then 
3 < w; let 77Z = w - z. Then 

/z(n + w + 1) > ?z(n) + m + 1 == 2 + m + 1 = w + 1, 

a contradiction. So h(r) is unbounded from above. 
This theorem, and Theorem 5, relate completability to the rate of growth of 

a sequence. However, there are infinite sequences whose completability neither 
theorem can decide. For example, let / be the sequence defined by 

(1, if n = 1, 
fW = <f(n - l) 2, if n is even, 

[f(n - 1) + 1, if n > 3 is odd. 

If n is sufficiently large, then 

fin + 1 ) < 2f(n), if n is even, 

fin + 1) > If in), if n is odd. 

/ satisfies neither the hypothesis of Theorem 5 nor that of Theorem 9. 
Theorem 9 yields infinite noncompletable sequences, for example, the se-

quence fin) = 3n. 

Remark: Those results of the past two sections which relate the three defini-
tions of completeness may be summarized as follows: 

Let J be the class of complete sequences, let K be the class of weakly com-
plete sequences, let L be the class of completable sequences, and let M be 
the class of all infinite sequences (see Definition 4) . Then J C 
K C L C M, and all containments are proper. The Remark after Definition 3, 
Theorem 4, and the Remark after Theorem 9 prove that J Q K, K Q L, L C M. 
The relations J C K and K C L are true because fin) = ft + 1 is in K but not 
in J, and because fin) = 2ft is in L but not in K. 
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sufficient condition that a nondecreasing sequence beginning with 1 be a 
0-sequence. 

6. J. L. Brown, Jr. "Integer Representations and Complete Sequences." Math. 
Mag. (January 1976):30-32. 

This article derives a theorem which gives a necessary and sufficient con-
dition that a nondecreasing sequence beginning with 1 be complete. 
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