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Introduction 

We are concerned with finding the convergents 

C, (a) P.7 

in lowest terms, to the positive real number a which satisfy the inequality-
relating to Hurwitz's theorem, 

I a - Cj (a) I < /5q2 , 0 < 3 < 1, (1) 

where a has a simple continued fraction expansion {i; i, i, . ..} and i is a 
positive integer. 

Van Ravenstein, Winley, & Tognetti [5] have solved this problem for the 
case where i = 1, which means a is the Golden Mean, and extended that result in 
[6] to the case where a is a Noble Number that is a number equivalent to the 
Golden Mean. 

The Markov constant for a, A?(a), is defined at the upper limit on /5/$ such 
that (1) has infinitely many solutions p., q. (see Le Veque [4]). Thus, in 
order to determine M(a) , we require the lower limit on values of 3 such that 
there are infinitely many solutions. 

Using the notation of [6] and the well-known facts concerning simple con-
tinued fractions (see Chrystal [2], Khintchine [3]), we have: 

(i) If a = {i; i, i, ...} where i is an integer and i > 1, then 
+ /£2 + 4 

which is the positive root of the equation xz - ix - 1 = 0; 

<u) p, («*« - (-r2) (•"• - Hn 
(" + ; ) 

where j = 0, 1, 2, ... . 

(-+2 - (-T2) 
(« + £) = p,-_i 

Hence, C,(a) = — 
3 qc (---(-r1) 

(2) 

The numbers p. have been studied extensively by Bong [1] where their rela-
tionship with Fibonacci and Pell numbers is described in detail. 
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Solutions to (1) 

Case 1. If j is odd (j = 2k + 15 k = 0, 1, 2, . . . ) , then (1) becomes 

which, using (2)(ii) , finally reduces to 

From (3), we see that; 

(i) there are no solutions for k if 

o < e , ^ V 1 ^ C4) 
(ii) there is a nonzero finite number of solutions for k if 

which simplifies to 

0 < A ( " 2 3 - 1 ) < 3 < 7 - ^ - . l . (5) 

We note that equality holds on the right in (5) only when a is the Golden Mean. 

(iii) All nonnegative integers are solutions for k if 

< 6 < 1. (6) 

( • • * ) 

(7) 

Case 2. If j is even (j = 2k, k = 0, 1, 2, ...)» then (1) becomes 

q6 (aq. - V- ) < -^ 

and again using (2)(ii)s this reduces to 

(?)* < »2(K« 4 ) - > 
From (7), we see that: 

(i) there are no solutions for k if 

0 < 6 < ^ ; (8) 

T + a) 
(ii) there is a nonzero finite number of nonsolutions for k if 

0 < a 2 ( ^ ( a + I ) _ i ) < l f 

which simplifies to 
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(iii) all nonnegative integers are solutions for k if 

/5 
a 

< 3 < 1. (10) 

In the particular case i = 1, a is the Golden Mean, a + (1/a) = /5, and 
there will be no convergents Cj (a) that satisfy (1) when j is even. However, 
if i > 2, then (/5/a) < 1 and there are convergents that satisfy (1) when j is 
even. 

Define 

h -_ /5 (a 2 -
a 3 

i) 
9 $M '" 

Summary 

/5 /5 
L+iV °u « 

Using (4)-(10), we see that: 

(i) If i > 2, then 3L < 3M < 3^ < 1 and there are no convergents that satisfy 
(1) when 0 < 3 < 3L. 

If $£ < 3 < 3W5 there are a finite number of convergents Cj (a) that satis-
fy (1) with j = 1, 3, 5, . .., 2[i?] + 1 and 

R = — - ^ • (11) 
In 

If 3 = 3yvfs there are an infinite number of convergents that satisfy (1) 
given by all Cj (a) where j is odd. 

If 3^ < 3 < 3̂ 5 there are an infinite number of solutions to (1). These 
are given by all Cj (a) for j odd and all but a finite number of Cj (a) when 
j = 0, 2, 4, ..., 2[S] where 

4 iU°+:)) - • 
(12) 

If 3[/ ̂ .3 < 1J there are an infinite number of solutions to (1) given by 
^•(a) for j = 0, 1, 2, ... . 

(ii) If i = 1, then 3^ < 3^ = 1 < 3y and there are no convergents that satis-
fy (1) unless 3L < 3 < 1 • In this case, the only convergents that are 
solutions to (1) are given by 

Cj(a) = -^—, j = 1, 3, 5, ... ., 2[R] + 1, 
Fo 

where 
z? i (1 - 3)(7 + 3/5) /, (7 - 3/5) ... , . r-n M Q . 
i? = In - ^ / In as specified in [5] . (13) 

(iii) The lower limit on numbers 3 such that (1) has infinitely many solutions 
is given by 
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and in this case the Markov constant for a is given by 

/5 , 1 Af(a) = -f- = a + - = /£2 + 4. (14) 
PM a 

Examples 

1. If i = 2, then a = 1 + /2 = {2; 2, 2, ... } , 3L * 0.77, 3M - 0.79, 3y - 0.93. 
Hence, we see that for: 

(i) 3 e (0, 0.77], there are no convergents satisfying (1); 

(ii) 3 E (0.77, 0.79), there are a finite number of convergents satisfying 
(1) and these are specified by (11); 

(iii) 3 = 0.79, there are an infinite number of convergents satisfying (1) 
given by all Cj (a) where j = 1, 3, 5, ...;' 

(iv) 3 G (0.79, 0.93), all the convergents CJ(OL) satisfy (1) for j odd, 
whereas all but those specified by (12) satisfy (1) for j even; 

(v) 3 ^ (0.93, 1), all convergents satisfy (1). 

In particular, it is seen from (14) that M(l + /2) = 2/2. 

2. If a = {1; 1, 1, 1, ...} = l +
2
 5 , then 3L - 0.85, 3M = 1, B# * 1.38. 

Consequently, if $ E (0, 0.85], there are no convergents that satisfy (1), 
whereas, if 3 E (0.85, 1), there are a finite number of solutions to (1) speci-
fied by (13). If 3 = 1J there are an infinite number of solutions given by all 
CAa) where j is odd and we see from (14) that 
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