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1. In [1] i t i s shown t h a t t h e r e e x i s t s a " f r i e n d l y - p a i r " of m u l t i p l i c a t i v e 
f u n c t i o n s {/, g} such t h a t 

(1 .1 ) / ( n a ) = g(n), g(n*) = / ( n ) , f(n)g(n) = 1 
for a fixed integer a > 2. It is clear that / and g must satisfy the function-
al relation, 

(1.2) F(na ) = F(n) for all natural numbers n. 

Hence, it is natural to examine whether pairs of functions {/, g}, not neces-
sarily multiplicative, exist so that 

(1.3) f(na) = g(n), g(n&) = f(n) 
for a given pair a, $ > 1. Relation (1.3) implies that f and g must both sat-
isfy the following functional equation where v = a • 3-

(1.4) F(nr) = F{n) M n e M (the set of all natural numbers). 

Conversely, If F satisfying (1.4) for some v exists, then for any factorization 
of v as a • 3 we could define 

(1.5) f(n) = Fin), g(n) = F(na) so that g(n$) = f(n) 

and so / and g satisfy (1.3). N.B. If r is prime, then both f and g are the 
same as F defined by (1.4). 

Thus, it suffices to look for arithmetic functions F that satisfy what may 
be called the "power-periodicity" expressed in (1.4). 

2. A complete characterization of such a power-periodic function F is more 
straightforward than when F is required to be multiplicative: Given a natural 
number r > 1, define F(jn) arbitrarily for every m that is not an rth power of a 
natural number. Every natural number n that is an rth power is uniquely ex-
pressible as 

(2.1) n = mr%, m a non-rth power and i a natural number. 

So F(n) with power-period v is easily characterized by its values at non-pth 
powers. 

3. Suppose F is required to be multiplicative. Then (1.4) implies: 

(3.1) UF(pra) = EF(pa) where n = Epa 

p\n p\n 
in the standard form of unique factorization into powers of primes. Writing 
F(pa) as Gp(a) and considering G as an arithmetic function of a9 we are led to 
the following property of G that would suffice to ensure the power-periodicity 
of F. 

Define a "multiplicatory-periodic" arithmetic function with period r by the 
relation 
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(3.2) G{vn) = G(n) for all n and a given integer v > 1. 

An infinity of such functions G exists. For we can define G{m) arbitrarily for 
every m that is not a multiple of r, and then every n that is a multiple of r 
can be uniquely expressed as 

(3.3) n = m • vi where v\m and i > 1. 

Taking a countable infinity of such functions G and labelling each of them 
with a unique prime number suffix p, se/t-lip a function F(n) defined as 

(3.4) F(n) = II G (a) when n = lip in the standard form. 
p \ n 

It is easily found that this F satisfies (1.4). 

4. We are, in turn, led to finding multiplicative functions that have a multi-
plicatory-period as defined in (3.2). In such a case 

(4.1) YlG(pa+i) = Il£(pa), n = Upa
9 r = FI pS 

where p runs through all the primes so that a, i > 0. Writing G(pa) as Hp(a), 
we see that a sufficient condition for (4.1) to hold is that #p be periodic in 
a with period i (in the normal sense of periodicity). That is, for every prime 
p and the corresponding i such that 

(4.2) p z \ r , p'l + l\v 
we should have 

(4.3) Hp(a + i) = Hp(a) V a e i . 

A function Up {a) satisfying (4»2) and (4.3) can be easily constructed by 
(i) defining Hp(o) as an arbitrary function of the prime argument p and (ii) 
further defining arbitrary values for H(a) for the values of a in the interval 
0 < a < i , where i is the unique integer corresponding to p given by (4.2). 
These arbitrary values completely determine the values of Hp(a) for every prime 
p and every nonnegative integer a, in order that (4.2) and (4.3) hold. Hence, 
a function G defined by 

(4.4) G(n) = II H (a), n = 11 pa, 
p p 

where p is a variable prime, is multiplicative and multiplicatory-periodic with 
n as that period. 

5. Special Solutions 

The preceding general solution notwithstanding, the particular pairs of 
functions given in [1] are still of interest. They show how certain simple 
expressions of known arithmetic functions exhibit the power-periodic relation 
(1.4), and hence generate friendly-pairs. 

The two instances given in [1] actually can be shown to be representatives 
of two classes of such arithmetic functions. 

Write P-periodic for power-periodic, which is the property expressed by 
(1.4) and M-periodic for the multiplicatory-periodic property expressed in 
(3.2). 

Class I: 

Consider the mth r o o t of u n i t y , oo = exp(27ri//??) for a g iven m > 1. Obviously 

(5 .1 ) k = 1 (mod m) => ukr = oor. 
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That i s , top as a function of r is M-periodic with k as an M-period. Construct 
the multiplicative fin) defined by i t s values for powers of primes as fipr) = 
u>r. Clearly* fin) = ojfi(n) where Q, in) is the total number of prime divisors, 
repetition reckoned, in the factorization of n. I t is also clear that fin) is 
P-periodic, with P-period k9 i . e . , f(n^) = fin) V n e M. 

When k happens to be a square, say k = a2, we have 

fin*) = g{rC)9 gin*) = fin). 

In the first friendly-pair given in [1], m is taken as a + 1 so that a = -1 
(mod 77?), so ooaP = ooT and hence fin)gin) = 1. 

Class II: 

The concluding pair of functions given in [1], "friendly" except for the fact 
that they are not reciprocals of each other, is 

(5.2) fin) = Z yW); gin) = £ yW) 
so that 

(5.3) fin1) = gin); gin1) = fin); fin)gin) = 1 if n is a cube 
= 0 if not. 

The summand u is the Mobius function. The first summation Is over divisors d 
of n such that nId is a perfect cube. The other summation is over the divi-
sors d of n such that d2\n and n/d1 is a perfect cube. 

The general class, of which the given example turns out to be representa-
tive, is given below. 

Take a multiplicative function c(ri) that vanishes when n is divisible by an 
pth power (for a fixed r) . There are infinitely many such functions, since 
cipx) can be defined arbitrarily for every prime p and 1 < X < r - I. Set 

(5.4) Fin) = X cid) and Gin) = £ c(d) 

where r and c are as just assumed and £ is any integer such that 

3 k: kl = 1 (mod r). 

The summations are over divisors d of n such that n/d is an rth power in the 
first case and dl\n and n/d1 is an rth power in the second case. 

F and G can be proved to be multiplicative. Define 

(5.5) Trin) = 1 if n is an rth power 
= 0 if not. 

Observe that Tr(n) is multiplicative. F and G can now be written as divisor-
convolution products. 

(5.6) Fin) = Y,eid)Trin/d) and G(n) = £ c ( d 1 / £ ) ^ (d)Tr (n/d), 

where, in the second summation, o is understood to be zero when d}^1 is not an 
integer. Such convolution products of multiplicative functions are multi-
plicative. Hence, F and G are multiplicative and are consequently character-
ized by their values for powers of primes. For every prime p > 2 and a > 1, we 
have, by virtue of (5.6), 

Min(r- 1, a) 
(5.7) F(p«) = £ cipl)T (pa-^), 
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where t!Minfl deno tes t h e minimum v a l u e from among t h e arguments w i t h i n t he 
p a r e n t h e s e s . By the n a t u r e of t he func t i on TT, i t i s c l e a r t h a t a l l t he terms 
but one on the r i g h t - h a n d s i d e of (5 .6 ) have to be z e r o . The r e s u l t i s t h a t 

(5 .8 ) F(pa) = c(pamod p ) , 

where fla mod r" stands for the remainder left when a is divided by r. 
If k and I are two integers such that kl = 1 (mod v), then 

(5 .9 ) F(pkla) = c(pkla mod r ) = c ( p a m o d p ) 

which, by (5 .8 ) = F ( p a ) . 
Hence 

(5 .10) F(nkl) = UF(pkla) [where n = Iipa~\ 
p \ n *- -» ' 

= II F(pa) = F(n). 

That is, F defined in (5.4) is P-periodic, with kl for a P-period. So, if we 
set F(nk) = G"k (n) , then G* in1) = F(ri) . We prove below that G* is the same as G 
defined in (5.4). 

Min(r - 1, fca) 

(5.11) F(pka) = £ c(pt)Tr(pk«-t). 
i= 0 

Now note that 

(5.12) Tp(p^'i) = ^(p^Ca-U)) 

since the indices on both of the sides differ by a multiple of r and Tr is not 
affected thereby. 

Using (5.11) and (5.12), we deduce 

(5.13) F(nk) = I\F(pka) where n = FIpa in the standard form 
P 

= II [Tr(pka) + c(p)Tv(pk^-^) + c(p2)Tr(pk^-2^) 
V 

+ ... until the index on p becomes negative] 

2 G(d) (multiplied out) 
dltT = n 

which = G{n) as defined. 

6. Three Points and an Open Problem 

Before concluding, we make three observations and indicate a promising problem. 

Note (i): Pair-wise "friendliness" being found only on off-shoots of power-
periodicity, one could study friendly-pairs defined on the basis of M-periodi-
city and normal periodicity also: Say 

(6.1) f{kn) = gin), g{ln) = fin), so that 

fikin) = fin) and gikln) = gin); 

(6.2) fin + k) = gin), gin + I) = f{n), so that 

fin + k + I) = fin) and gin + k + £) = gin) . 
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The former of these cases does not appear to be as trivial as the latter, as 
seen from the construction of M-periodic functions given earlier. 

Note (ii): The definitions of P- and M-periodicities, leading to interesting 
consequences in the case of arithmetic functions, would seem to degenerate into 
trivialities in the case of functions of a continuous variable. 

For instance, defining f(kx) = f(x) for all real x or f(xk) = f(x) for all 
real x leads only to f being a constant, if / is to be continuous at zero in 
the first case and at one in the second case. 

Note (iii): Why pairs only? one could ask for r-tuples of functions f.s 0 < i < 
n - 1, satisfying the mutual relation* 

(6.3) f.(n (•) kt) = fi+lmodP(n), 
where (°) stands for multiplication or "to the power of." Obviously, every f. 
is "0) "-periodic; with f\ki for a "(•) "-period. 

i 
Note (Iv): In the case of normal periodicity it is well known that if k is a 
period then there is a divisor of k that is the minimal period (considering 
arithmetic functions), and a function cannot have more than one fundamental 
period. That is not true for M- and P-periodic arithmetic functions. It 
appears promising to study the set of integers 

{kvlsi r, s em + {0}} 
for a given pair of natural numbers k and £. 
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