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1. Introduction 

The Fibonacci numbers are defined by F0 = 05 F1 = 1, Ft = Fi_1 + Ft _2 for 
t > 2. It is well known [3] that the "ladder" composed of n squares (Fig. 1) 
has Fy n + 2 1-factors. 

FIGURE 1 

A 1-factor of a graph G with In vertices is a set of n independent edges of 
G} where independent means that two edges do not have a common endpoint. In 
the present paper, we investigate the number of 1-factors in a graph Qp,qS 
composed of p + q + 1 squares, whose structure is depicted in Figure 2. 

1 

? » f » 1 J 

QP,c 

FIGURE 2 

Throughout this paper, we assume that the number of squares in Qp}q is fixed 
and is equal to n + 1. 

The number of 1-factors of a graph G is denoted by K{G}. 

Lemma 1: K{Qp>q] = Fn + 2 + Fp + lFq + l where n = p + q. 

Before proceeding with the proof of Lemma 1 we recall an elementary prop-
erty of the Fibonacci numbers, which is frequently employed in the present 
paper: 

<» Fm = FkF
m-k + i +Fk-iF,-k' l±k<m. 

Proof: Let the edges of Q?} be labeled as indicated in Figure 3. 
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containing the edges 1 and 2 must not contain the edges 
s 9 because they have common endpoints with 1 and/or 2. Then* 

FIGURE 3 

First observe that above and below the edges 1 and 2 there is an even number of 
vertices. Therefore, a 1-factor of Qp,q either contains both the edges 1 and 2 
or none of them. 

A 1-factor of 
35 4, 
however, the edge 10 must and the edge 11 must not belong to this 1-factor. 
The remaining edges of Qp} q form two disconnected ladders with p - 1 and q - 2 
squares, respectively, whose number of 1-factors is evidently Fp + iFq. There-
fore, there are Fn+i^q 1-factors of Qp,q containing the edges 1 and 2. 

The edges of Qpn without 1 and 2 form two disconnected ladders with p + 1 
and q - 1 squares, respectively. Consequently, there are F oF +l 1-factors of 
QptQ which do not contain the edges 1 and 2. 

This gives 

K{Qp, qs Fp + 3Fq +1 + Fp+lFq = Fp + 2Fq +l + Fp + lFq + 1 + Fp + lFq 

= 7? 4- TP J? 
p+q+2 ^p+l£q+l9 

where the identity (1) was used. Lemma 1 follows from the fact that p + q = n. [ 

2. Minimum and Maximum Values of K\Qp q\ 
Theorem 1: The minimum value of K{Qp q}, p + q = n , is achieved for p = 1 or 
q = I. 

Proof: Bearing in mind Lemma 1, it is sufficient to demonstrate that for 0 < 
p < n, 

F2Fn ~ Fp+lFn-p + l> 
with equali ty if and only i f p = 1 or p = n - 1. 

Now, using (1) , 
JP TP 
r p + l n - p + 1 "n+1 

JP TP = TP + TP 

Fn + FpFn-p + Fp-lFn-p-l 

- F F 

F F ipJ- n-p 
F + F ,F i > F V n -

Because of FQ = 0, equalit}?- in the above relation occurs if and only if p - 1 
0 or n - p - 1 = 0 . D 
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Theorem 2: The maximum va lue of K{Q } , p + q = n9 i s achieved for p = 0 or 

Proof: 
F ,F , = F , - F F < F = F F 

p+lLn-p+l rn+l EpEn-p ~ n + 1 rlrn + l 
wi th e q u a l i t y i f and only i f p = 0 or p = n . Theorem 2 fo l lows now from Lemma 
1. D 

Theorem 3: I f p * 0, q * 0 , then t h e maximum va lue of # { § p ~ } , p + q = n, i s 
achieved for p = 2 or q = 2. 

Proof: From the proof of Theorem 1 we know t h a t for 0 < p < n , 
F F < F F 
n2rn-2 ~ £prn-p 

with equality for p = 2 o r p = n - 2 „ This inequality implies 

i.e. , 

F - F F > F - F F 
n + 1 r 2 n-2 ~ n+1 rprn-ps 

wjp _J_ w F - F F > F F + F F - F F 
i.e. , 

p w > F F 

from which Theorem 3 follows immediately. Q 

Theorem 4: If p * 19 q * 1, then the minimum value of K{QP} q}, p + q = n, is 
achieved for p = 3 or q = 3. 

Proof: We start with the inequality 

FoF ^ > F F 
c 3r« - 3 ~ npcn-p 

which was deduced w i t h i n the proof of Theorem 3 and in a f u l l y analogous manner 
o b t a i n 

ww < F F 
rhrn-2 ~ r p + l n-p + 1 

wi th e q u a l i t y for p + l = 4 o r p + l = n - 2 . D 

3 . The Main Resul t 

The r ea son ing employed to prove Theorems 3 and 4 can be f u r t h e r con t inued , 
l e a d i n g u l t i m a t e l y to the main r e s u l t of the p r e s e n t pape r . 

Theorem 5: 
(a) I f n i s odd, then 

K{Q0>n] > K{Q2in_2] > K{Qhtn_h} > . . . > K{Qn.3i3} > K{Qn.ul\-

(b) If n i s even and d i v i s i b l e by four , then 

K{Q0iJ > K{Q2rn,2} > • • • > K{Qn/2> n/2] > * { e „ / 2 + 1 , „ / 2 - i > 

> ^«*/2+3,n/2-3> > "- > Z{«n-3,3> > **«„-!, 1>-

(c) If n is even, but not divisible by four, then 

*{«„,„> > K{Q2in_2} > ••• > *{«B/2-i,„/2 + l> > K^n/Z, n/2> 

> ^«„/2+2.»/2-2> > ••• > *{e„-3.3> > X<«»-1.1>-

All the above inequalities are strict. 
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4, Discussion and Applications 

There seem to be many ways by which the present results can be extended and 
generalized. It is easy to see that if in the graph Qp,q some (or all) 
structural details of the type A and B are replaced by A* and B*, respectively 
(see Fig. 4), the number of 1-factors will remain the same. This means that 
our results hold also for chains of hexagons. In particular, it is long known 

B* 

FIGURE 4 

[2] that the zig-zag chain of n hexagons (Fig. 5) has Fn + n 1-f actors. As a 
matter of fact, the number of 1-f actors of chains of hexagons are of some 
importance in theoretical chemistry [1] and quite a few results connected with 
Fibonacci numbers have been obtained in this field (see [1] and the references 
cited therein). 

FIGURE 5 
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