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1. Introduction

The numbers {C,(a, b, k)}, defined by
C.(as b, k) = C,_ (a, by k) +C,_,(a, b, k) + Kk,

with C (a, b, k) = a, C,(a, b, k) = b, where k is a constant, have been studied
in [1]. The Fibonacci sequence arises as the special case 7, = (,(1, 1, 0),
while the Lucas sequence is L, = (,, (1, 3, 0). The sequence

i,y ={..., 0, 0, 1, 2, 4, 7, 12, 20, ...},

where (C, = (,(0, 0, 1), has the property that (, = F, - 1, the sequence of
Fibonacci numbers minus one.

The sequence {(C,} has remarkable divisibility properties since almost every
term 1is a composite number and at least one factor can always be named by
examining the subscript of (,. Further, {,} contains exactly two prime terms,
and two-thirds of its terms are even numbers. Analogous properties extend to
the generalized sequence {(,(a, b, k)}.

2. Prime Factors of C,

First, since F3, gives all the even Fibonacci numbers, (3, is always odd,
and C, ,, is always even, so the probability of choosing an even term from {(,}

at random is 2/3. Since (C, = F, - 1, we can use [2] to prove some theorems in
one step.
Theorem 1: For primes of the form p = 5k + 2, p divides both (,_; and C, ,,-
Proof: We have F, £ -1 (mod p) and E%+1 = 0 (mod p) from [2]. Then

Cpog = Fpoy = L= Fppy = (Fp + 1)
while

- = 2 -
Copsr = Fopap = 1= (Fpy )2+ (B, + DEp = (Fp + 1),

where all terms on the right-hand side are divisible by p in both cases.

Theorem 2: For primes of the form p = 5k = 1, p divides Cp, Cp s Cpps Cpy oy
C, , and C )

2p 2p-3°

Proof: We have F, = 1 (mod p) and Fpbep 20 (mod p) from [2]. We write Cp,
Chyp» and C in forms in which p divides the terms on the right-hand side:

P p-2
Cp = (Fp - 1),

Cpyy = Fpyy — 1 =F, | + (F, - 1),

Cpog =Fpp = 1= (F, - 1) - F,_,.
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Since

Cp+n—1 = Fp+n—1

where p]Fp_an_l and p|(Fp - 1) but p does not divide Fp, observe that whenever
p|(F, - 1), then p]Cb+n_1. Let » = p, p+ 1, and p - 2 to write that
pich—l’ plczp’ and plczp-3-

Further, a little rewriting lets us prove the following corollary.

-1 =F(F, - 1) +F, F,_ + (F - 1),

-1"n

Corollary: If pICn, then p|0n+m(p_l), m=0, *1, ¥2, ..., where p is a prime of
the form 5k * 1.

Proof: From the proof of Theorem 2, if p[Cn, then p|0n+(p_1). The corollary
holds by the Axiom of Mathematical Induction, since whenever p|0n+m(p_l), then

pic[n+m(p—l)]+(p-l) = Cn+(m+l)(p—1)'

Theorem 3: I1f N(p) is the period of a prime p in the Fibonacci sequence modulo
p, then

P!Ckn@)-l’ plckn@)+1’ and plckn@)+z'
Proof: Since
Ckn(p)+n -0y = Fkr[(p)+n = Fys
and since p divides the right-hand side by definition of II(p), if plCn, then
pICkn@)+n . Theorem 3 follows because ¢_; = (¢, =(, = 0.
Corollary: The prime 5 divides 020k—1’ 020k+1’ 020k+2’ and 020k+8'
Proof: 1(5) = 20, and 5 divides C_y» Cy5 Cy, and Cg.

Theorem 4: If p is a prime of the form 5k * 2, then p[Cg(p+1)_2 if g is odd.
If q is even, plch7+1)-1’ p‘CqQ>+1)+1’ and p|Cqp+1)+2-

Proof: 1f pICn, then p|0n+an» as in the proof of Theorem 3. From [3], if p
is a prime of the form 5k * 2, then H(p)'Z(p + 1). Then, p|0n+~bﬂp+l)’ m any
integer. Since

p|Cy_1 P]Cp—1+zm(p+1) = Clm+p+@n-1) »
or, for g odd,

Plep+-2 = Coprr-2-
If q is even, let g(p + 1) = Kl(p) for some k, since H(p)|2(p + 1), and use
Theorem 3.

Corollary: If p = 5k * 2, then
(i) p divides C(P+Z)(p—l)’ Cp(p+3) > and Cps(p+l) -2
(ii) p divides C

C 2_ 55 sz, and Cp

pp+2)° “p 241

Proof: (i) Take q odd, g =p, ¢q =p + 2, and ¢ = p®, in Theorem 4. To show
(ii), take g even, g =p + 1, g =p - 1.

Theorem 5: If p is a prime of the form 5k * 1, then

p|0(m+l)p_(m+2y p]Ckm+1)p_(m_l), and p|Cey41)p-n fOr any integer m.
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Proof: From the Corollary to Theorem 2, if p[Cn, then p(Cn+m(p_1). From Theo-
rem 2, take n = p - 2, p+ 1, and n = p, and simplify.
Corollary: For any prime p, p # 5, p[(?pz, plC‘sz, and p[sz-z.

Proof: 1If p = 5k £ 1, let m = p in Theorem 5. If p = 5k * 2, use the Corollary
to Theorem 4.

Theorem 6: If 1I(j) is the period of any integer j, j # 0, in the Fibonacci
sequence modulo j, then, for all integers %k,

Iy =10 FCry+1> ad J[Cupisyea-
Proof: See the proof of Theorem 3. Notice that any integer will eventually

divide (,, for some n.

3. TFibonacci and Lucas Factors of C,

Since Cpyp, = Cpop = Fpy,, - Fp_ys we can write
(3.1) Cosn = Cp_p=F,L,, 1if n is odd,

Cosn = Cp_y= InFys 1if n is even.

Observe that, if LntCm_n, then L,|C,4+,, and L, has period 2n if »n is odd. Sim-
ilarly, F,, has period 2n if n is even. Putting these together with Theorem 6,
we write

Theorem 7: 1f n is odd, L, divides (C9,,-15 Co,pt+1> and Cop,,y0, while if »n is
even, F, divides Cp,,-15 Copp+1s and Cppyip for any integer r.

Now things are getting exciting. Since we can take n = 2k + 1 to find that
L2k+l divides Cl+k+1’ qu,,_3, and CL,L](-}.L;, and »n = 27( to see that FZ]{ divides
Cux~1s Cuyp+1s and Cupyp, notice that (, is always divisible either by Ljyz4; or
by Fo . Now, if k = 1, F, = 1 divides any integer, so take |k| > 2. Thus, if
n 27, or if n < -5, then (, always has at least one factor smaller than (, and
greater than 1 which we can write exactly, so (, is not prime. We examine the
sequence from C_, through Cg: -4, 1, -2, 0, -1, 0, O, 1, 2, 4, 7, and find that
the only primes are 2 and 7.

Theorem 8: The sequence of Fibonacci numbers minus one, ¢, = F, - 1, contains

only composite numbers for all n > 7 and all n < -5. The only primes which
appear in {C,} are C, = 2, Cg = 7, and |C_,| = 2. :

4, Divisibility of the Generalized Sequence {Cn(a, b, k)}

From [1], the sequence {C,(a, b, k)} with initial values C; = @ and C, = D
is given by

(4-1) C«,l(a’ by k) = Cn—]_(a’ b: k) + Cn_z(a, b) k) + k
=aF, _, + bF __; + kC, (0, 0, 1)
= H, + kC,

for the generalized Fibonacci numbers #,, H, = C,(a, b, 0), and C, (0, 0, 1)=0C,
of the earlier section.
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As in Section 3,
Cpenlas by k) = Cp_nla, b, k)
so that we can write
(4.2) Coanlas by k) = Cp_p(a, b, k) L,H, + kF,L,, if n is odd;
Cnenlas by k) = Cp-y(as b, k) = F,(Hy4y + Hyoy) + kL, F,, if n is even.

(Hm+n - Hm—n) + k(0m+n - Cm—n)’

]

Thus, the periods of F, and L, are still 2n, where we again distinguish n even
and n odd. Also, since every nonzero integer eventually divides Fj for some k,
every mnonzero integer will divide (, (a, b, k) for some n if {C,(a, b, k)}
contains a zero term. If {C,(a, b, k)} contains two zero terms, in some cases
we will again have a finite number of primes occurring.

Theorem 9: 1f Cq (a, b, k) = 0, and if a nonzero integer j has period I(j) in
the Fibonacci sequence, then j]Ch +mu(jy (@ b, k) for all integers m.
Theorem 10: 1f F, |C,(a, b, k), then

FZm[Cq+Lim(a’ b, k)’
and if L2m+1‘0q(a, b, k), then

Lyt |Coriman (@ by K,
for any integer m.

q+4m+

Now, Theorem 10 gives us some interesting special cases. Notice that if
Cqla, bs k) = 0, and if Cgy4r(a, b, k) = 0, where r is an odd number, then
{C,(a, b, kK)} will contain a finite number of primes, because for n larger than
certain beginning values, C,(a, b, k) will always be divisible either by F2m or
L2m+l’ where F2m z 0, *1, and L z *].

2m+1
Without loss of generality, if {C,(a, b, k)} has a zero term, renumber the
terms, taking new starting values, so that
a=0=C(0, b, k).
Then, if Ch.43(0, b, k) = 0 for some r > 0, from (4.1),
Chi1(0, By k) = 0 Fp_q + BF, + kCpyy = 0,

where we list some possibilities and special cases. Notice that k = F, and b =
-Choy1=-F.41 + 1 always is a solution, and write the resulting

Co(ay by k) = Cp(0y =Cpr1s Fn).

For » = 1, we have (, (0, 0, 1) = Cy; for » =2, C,(0, -1, 1) = (C,-p; and » = 3
gives C,(0, -2, 2) = 2C,_,, all the sequence of Fibonacci numbers minus one.

Consider » = 4 and {C,(0, -4, 3)} ={..., 0, -4, 1, -2, 0, 1, 4, 8, 15, 26,
44, 73, 120, ...}. We can show that

CH(O, -4, 3) = -4Fn—]_ + 3C.ﬂ = Ln_3 - 3.

From [2], we have sz = 3 (mod p) where p is any prime, so plep - 3, and we
have
PlCop 30, =4, 3).

All odd-subscripted (, (0, -4, 3) have F, or L, for a divisor for some m, but we
cannot easily say whether or not {C,(0, -4, 3)} contains a finite number of
primes. However, any prime terms will have a subscript of the form 6m. If r
is even, we cannot determine whether or not {C,(0, b, k)} will contain a finite
number of prime terms.
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However, for r = 5, {(,(0, -7, 5)} contains only two primes, 2 and 7. We
write Cn(O, _7, 5) for -3 < »n < 10: —24, 7, "]-2’ 09 _73 _23 _4, _]-) 0’ 4’ 9’
18, 32. We observe |[C;| = 2 and |C3| = 7 = C_,. From Theorem 10,

L2k+1|01+4k+2’ L2k+1lce+qk+z’ F2k|01+‘+k’ and F2kI06+L+k’

covering every possible subscript, so that (,(0, -7, 5) always has Fy; or Loy,
for a divisor. But F,, = 1 for k = #1, and Ly;4q = *1 for k=0 and k = -1.
So terms (,(0, -7, 5) for » > 10 or n < -3 have a divisor greater than 1 and
less than (,(0, -7, 5) and thus are not prime. For » = 7, in a similar
fashion, we find only the three primes 7, 73, and 79 in {(,(0, -20, 13)}. If
r =9, all the terms of {(C, (0, -54, 34)} are even, but, if we instead consider
{¢,(0, =27, 17)}, we find

|Cs| = 13 = C11, |Cg| = 11, and Cyy = 107

as the only primes. Finally, r = 11 has only two primes
|C5| =73 and |Cg| = 79,

but » = 13 is the best of all, containing no primes at all!

From the preceding discussion, we can write the following theorem.

Theorem 11: 1f {C,(a, b, k)} has Ci(a, b, k) = 0 and Cy,x(a, b, k) = 0 for r
an odd integer, then [Cn(a, b, k)| is prime for only a finite number of values
for n.

Now, recall from above that the probability of choosing an even term from
{c,} = {C,(0, 0, 1)} is 2/3. {C,(a, b, k)} has the same property only when k
is odd, and when at least one of a or b is even. These results can be verified
by examining C,(a, b, k) from (4.1) for n = 3m, 3m + 1, and 3m + 2, where we
always take k odd.

(1) Cy,(as by, k) = aFy o, + bFy | + kCy .

Note that kC3,, F3,-1, and Fg3,_, are all odd. Then, if a and b have the same
parity, Cg,la,b, k) is odd, while if g and b have opposite parity, C3,(a, b, k)
is even.

(i) Cy,.(a, by, k) = aF, | + bFy + kCy ..

Here both bFg, and k(Cj3,.; are always even, while F,_; is odd, so C3,4+1(a, b, k)
is even or odd as a is even or odd.

(111) €y ,,(as by k) = aFy + bFy .| + KOy .

Now, aFj3, and kC3,.» are always even, while Fg, .1 is odd, so C3,4o(a, b, k) is
even or odd as b is even or odd.

Putting the three cases together, first notice that, if all of a, b, and k
are odd, C,(a, b, k) is always odd. 1If g and b are both even, Cj3,(a, b, k) is
odd but C3p41(a, b, k) and C3,4p2(as b, k) are both even. If a and b have
opposite parity, C3,(a, b, k) is even, and either Cg,,;(a, b, k) or C3,.,(a, b,
k) is even, but not both. Then, if k is odd, and at least one of a or b is
even, the probability that a term chosen at random from {C,(a, b, k)} will be
even is 2/3.

Next, re—examine the three cases for k even. If a, b, and k are all even,
Cn(a, b, k) is always even, a trivial result. In (i), kC3, is even, while
F3y-p and F3,_; are odd, so that Cj3,(a, b, k) is odd if a and b have opposite
parity, but even if a and b have the same parity. From (ii), both bFj, and
kC3,+1 are even, while F3,_; is odd, so C(j3,41(a, b, k) is even or odd as g is
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even or odd. From (iii), both afF'3, and kC’3m+2 are even, while Fj3 .1 is odd, so
C3ns2(as by k) is even or odd as b is even or odd. Putting these results
together, if k is even, and a and b have opposite parity, then (3, (a, b, k) is
odd while exactly one of C3,41(a, b, k) or Cg,yo(a, b, k) is odd. If k is even
and both a and b are odd, (3,(a, b, k) is even but both (C3,.;(a, b, k) and
C3ps2(cs b, k) are odd. Thus, if k is even and at least one of g or b is odd,
the probability of randomly choosing an even term from {(C,(a, b, k)} is 1/3. We
summarize in Theorem 12.

Theorem 12: 1f k is odd, and at least one of a or b is even, the probability
that a term chosen at random from {C,(a, b, k)} will be even is 2/3. If k is
even, and at least one of a or b is odd, the probability that a term chosen at
random from {C,(a, b, k)} will be even is 1/3. 1If a, b, and k are all odd,
C,(a, b, k) is always odd.
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