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1. Introduction 

The n-dimensional hypercube, Qn , is the graph whose vertex set, V(Qn), is 
the set of all n-bit strings, any two of which are adjacent iff they differ in 
exactly one bit. We refer to Qn as the n-cube. The 1-, 2-, 3-, and 4-cubes 
are illustrated in Figure 1. 
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FIGURE 1 

Sometime in the early 1980s, Paul Erdos asked for the largest order of an 
induced subgraph of Qn which contains no 4-cycle. This question has been 
answered and extremal graphs characterized [1]. Since a 4-cycle in Qn can be 
interpreted as a sub-^s it is natural to generalize and ask for the order of a 
largest induced subgraph of which contains no sub-^ k e {1, 2, 3, ...}. 
It is also natural to ask for the order of a largest induced subgraph of Qn 
which contains no Ik -cycle, k ^ {2, 3, . . . } , but this question seems far more 
difficult. Partial results in this direction appear in [2]. 

With the advent of the hypercube computer, these questions assume a new 
significance. An n-dimensional hypercube computer is a multicomputer with 2n 

processors, possessing the network topology of an n-dimensional hypercube; 
i.e., each vertex of the cube is associated with a processor and each edge 
represents a direct communication link between the two processors incident with 
that edge. A question that has generated some interest recently ([3], [4]) is 
how does the hypercube computer behave in the presence of faulty nodes (or 
links)! In particular, given a set of faulty nodes (links), what is the 
largest subcube that remains? The question is pertinent because there are 
algorithms which are designed to run on a cube structure, and in the presence 
of faulty nodes (links) will run on the largest remaining subcube [3]. 

In the following, Fn and Ln will denote the nth Fibonacci and Lucas 
numbers, respectively, having the initial conditions FQ = 0, Fi = 1 and L]_ = 1, 
L2 = 3. We use [x\ and Ix] to denote the greatest integer less than or equal 
to x and the least integer greater than or equal to x> respectively. Now, let 
f(n5 k) denote the largest order of an induced subgraph of Qn that contains no 
sub-C7, • It is known that 
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fin, 2) 3 [1]. 

A good lower bound for f(n, 3) is known, namely, 

(n, 3) > |. 2n + 2L 2 J /fr [5], 

In general, it is easy to show [3] that 

(1) f(n, k) > YTJ' 2*» 

In this paper we prove, in Theorem 2 and its corollary, a result which 
enables us to improve on the inequality in (1) for the special case k = 4. We 
obtain 

4 nn , 1T 
- • 2 + -^Ln+1 , n even, 
i 4 0?2 2 

n odd. 

2. The Hypercube Problem 

The order of a graph is the size of its vertex set. Given a graph G with 
vertex set V(G) and edge set E(G), a subgraph of G is a graph whose vertex and 
edge sets are subsets of V{G) and E(G), respectively. If # is a subgraph of $^ 
and there is a subgraph of H isomorphic to some Qk, 1 < k < n9 then H is said 
to contain a sub- *k- Given any graph G with vertex set V(G) and S Q V(G)9 the 
subgraph of G which is -induced by S, denoted <S>, is the graph with vertex set 
S and two vertices of <S> are adjacent iff they are adjacent in G. 

In Figure 2, £]_, £2 > and £3 are all subgraphs of §3. The graphs £]_ and £2 
are not induced subgraphs of Q$, while £3 is. G2 and £3 both contain a sub-^2* 

110 

100 101 

(a) Gx 

110 111 

100 101 

011 

001 

( b ) G2 

FIGURE 2 

(e ) G, 

011 

Example: Let A/ be the set of 16 vertices listed in Figure 3. For each v = 
vlv2V3Vhv5V§v7 ^n »̂ w e n a v e i>5 = y6 = v7 = I, while the first four bits range 
from 0000 to 1111. Hence < W > 5 the subgraph of Q7 induced by W, contains a 
sub-^. (In fact, < W > is isomorphic to Qi+.) 

For V e V(Qn), the weight of v9 denoted wgt(y), is defined to be the number 
of l's in v. Observe that the vertices of W have weights ranging from 0 to 4 
(mod 5). In fact, for all n, any sub-Q̂ . in Qn contains vertices with weights 
of 0, 1, 2, 3, and 4 (mod 5). For n e Z+, k £ {0, 1, 2, 3, 4}, let 

F£ = {v e n« n ) : wgt(y) = k (mod 5)}. 

If V Q V(Qn) and <V> contains a sub-^ , then 

V n n for all k G {0, 1, 2, 3, 4}. 
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FIGURE 3 . The v e r t e x s e t W 

Hence for any k, <V(Qn) - 7̂ > contains no sub-Q,. This implies (1). To obtain 
the inequality in (2), we first let V1^ = \\V\. Clearly, 

'»" • L ("•)• 
mod 5 

and if we define 
V{n) m m FT, , 

0 <k <4 

then we obtain f(ns k) > 2n - V(n). Determination of a formula for V{n) is the 
content of the next two sections. 

3 . P r o p e r t i e s of t h e V£ 

We begin with an example. By definition, 

Similarly, 

rI-(!)+(J)-14 and ,7 _ (7) _ (7) _ „7 _ 35. 
Hence, 7(7) = 14 = 7?. On the other hand, if we compute values of 7^, we find 
that 7(6) n 7f. In Theorem 1 we will show that, if we define 

kin) = - 2 (mod 5): 

then V(n) V, k(n)' 
Because the terms V£ are computed in terms of binomial coefficients, we 

would expect the V£ to reflect some of the properties of binomial coefficients. 
That this is the case is illustrated in the following lemma. 

Lemma: For n e Z +, k e {0, 1, 2, 3, 4}, 

(1) (Recursion Formula) 

vk V\ rc-l + VjJ_-r, where k - 1 is computed modulo 5. 
(2) (Symmetry Formula) 

K Vj1, where k + j E n (mod 5) , 
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(3) (Initial Conditions) 

(i) For n < 5, 7* = (£j, 

( i i ) V5
Q = 2, 75 = (£ ) for fc G {1, 2, 3, 4} . 

Proof: To prove (1) let £7n be a set of size n and let W% denote the collection 
of all subsets of Wn of size congruent to k (mod 5), k G {0, 1, 2, 3, 4}. Then 
clearly #*/£ = 7^. Now let w G fr/n, W G W%. If w e W, the remaining elements of 
W can be chosen from the n - 1 elements of fr/n - {w} in 7^, ways. Otherwise, if 
W £ W, the elements of W can be chosen from the n - 1 elements of J/" - {w} in 
7£~1 ways. 

To prove (2) let n G Z + , fc G {0, 1, 2, 3, 4}. The division algorithm yields 
integers m and j such that 

n - k = 5m + j where j G {0, 1, 2, 3, 4}, 

and hence k + j = n (mod 5). Using this we can relate V£ and 7" as follows: 

\ ?-fi) + (*is) + - + (*:s.) 
- « ) • ( * : 5) • • 

= ( „ " * ) + -

= Vj + 5m) + 

\n - j / 

+ G) 
+ G) • v-

The proof of (3) is trivial and so omitted. Q 

Using the initial conditions and the recursion for the 7^, we can build a 
table of values for the 7^ similar to Pascal's triangle. Since the 7^ are 
computed mod 5, there will be 5 entries in each row of our Pascalian Rectangle. 
In Figure 4 we illustrate the general form of the table and in Figure 5 we fill 
in specific values. 
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FIGURE 4 
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Remark: Notice the wrap-around property of the table. The right-most entry in 
an even row (or the left-most entry in an odd row) is the sum of the left-most 
and right-most entries of the previous row, e.g., 

Vl- V% + V* and V\ = Vl + V\. 

If the table is constructed as in Figure 4 above and Figure 5 below, then 
the left-most entry of the nth row is next seen to be a smallest entry of the 
nth row. Recalling the definition of 7(n), we state the following theorem. 
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Row 

0 0 1 1 0 1 
0 1 2 1 0 2 

0 1 3 3 1 3 
1 4 6 4 1 4 

2 5 10 10 5 5 
7 15 20 15 7 6 

14 22 35 35 22 7 
36 57 70 57 36 8 

72 93 127 127 93 9 

FIGURE 5 

Theorem 1: For n e Z + , 

V{n) = Vl{ny with k(n) 2 (mod 5). 

Proof: That the left-most entry of the nt h row is of the form [n/2] - 2 follows 
from the recursion formula and induction. Next, we must show that the left-
most entry of each row in Figures 4 and 5 is also a smallest entry of that row. 
This follows easily by induction once we verify that the symmetry of each row 
is maintained. But this is immediate from the symmetry formula of the Lemma. 
If n is even, then 

- 2 n 
2 

2. 

If the left-most entry of the nt h row is ^ / 2 ) _ 2 5 

of the form 
then the right-most entry is 

Vn 

(n/2) -2 + 4 
V(n/2) + 2' 

Since 

( I - 2) + (1 + 2 ) = " (mod 5> 
we have, by the Lemma, that 

V, v "{nil) -2 v(n/2) + 2e 

Similarly, 

(̂  - 2 + l) + (̂  - 2 + 3) E n (mod 5) 

so that the second and fourth entries of the row are equal. Similar reasoning 
verifies the shifted row symmetry for n odd. An easy induction completes the 
proof. D 

4. A Recursion for V, k{n) 

Our next theorem provides a recursion and closed formula for V(n). 

Theorem 2: For any integer n E Z+, 

[2V(n - 1), n odd, 
(i) V(n) 

2F(n - 1) + F n-25 
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( i i ) V(n) = 
2n - ~Ln , n o d d , 

n 1 
2 " ~5Ln + l > n e v e n " 

Proof: By the established symmetry of the table in Figure 5, the first and last 
entries in an even row are identical. Also, for n odd, we have 

kin) 2 = kin - 1), 

Therefore, we have, for n odd 
m vn = vn~l + vn~l = vn~l + vn~l =?vn~l 

{ 3 ) Vk{n) Vk(n) + Vk{n)-l Vk(n -1) + Vk(n-l)-l ZVk(n-l) 
For n even, in 7^(n), we need to take a somewhat less direct approach. To 

this end, we define D(n)s for all n, as follows 

(4) Din) 
f^(»)+2- ^n(n)+l ^ 0 d d ' 
| 7 « V1/fe(n) + 1 'fc(n) 

We will show that Z?(n) 
fies that 

n even. 
To begin with, consultation of Figure 5 veri-

/}(!) = i - o = l, 27(2) = 1 - 0 = 2, Z)(3) = 3 - 1 = 2, 2?(4) = 4 - 1 = 3. 

Now, for n even, we have 

D™ = Vk(n)+1- VUn) 

\vn~l + vn~l] 
1 k(n) +1 ^(n)J 

rn -1 + 7 n-l 

L^(n) + ^(n)-lJ 

"k(n-l)+2' '/c(n-l)+lJ lvk(n-l)+ll vk(n - l)* + 7,5 

r « - l 
L ^ ( n - l ) + 2 ^(n-l)+l J ^ lVk(n-l) +1 vk(n-l) 

D(n- 1) + [Vk\~l2)+l- Vk
n

(~2_2)] 

Din - 1) + £(n - 2). 

A similar argument shows that the recursion holds for n.odd. Since Din) satis-
fies the same recursion as Fn and the initial conditions are the same, we have 
that Din) = Fn . 

We return now to V-, k(n)° F o r n e v e n , we h a v e 

(5) 7 Tn - 1 - 1 
&(TI) " vk(n) T "fe(w)- 1 

7 n - 1 + 7. n - l 
fc(n-l) + 1 fc(w - 1) 

Tn-\ 
vk(n-l) 

T n - 1 = 277*; . \ ,+ K ^ 1 W 1 - ^ ; . 1 } ] 

= 2 7 " " I + [ 7 n ' 2 
fe(n - 1) L ' 

n-l 

27 

fc(w - 2 ) + 1 vk(n - 2 ) J 

" " 1
1 , + Din - 2) = 2 7 " " 1

 n + F : ( n - 1) v y k(n - 1) n •2 * 

Combin ing t h e r e s u l t s i n ( 3 ) and ( 5 ) y i e l d s 
Tn-\ 

(6 ) 7 k(n) 

27 fc(n - D ' 
rn - 1 
kin - 1 ) 

ft o d d , 

277, ,„ n + Fn _ 2 , n e v e n . 

126 [May 



A HYPERCUBE PROBLEM 

To solve this recursion we note that [x/ (1 - x - x2) ] is the generating function 
for the sequence F0 , Fl3 F2, . .., so that [-x/ (1 + x - x2)] is the generating 
function for the sequence FQ, -Fi, F2, -^33 • ••> and therefore 

x - x^ 1 + X 
is the generating function for the sequence FQ, 0, ̂ 25 0, F^s 

7(X) = X] C ^*-

then (6) gives 

V(x) = 2:rF(x) + x - x1 - x 

Let 

2x4 + 
1 + x 

A. partial fraction expansion of the rational function V(x) leads, after some 
calculation, to the closed form: 

(7) Un) 
i . 2 -
.1. 2* 

1 T 

— Ln + i , n even, 

5L> n odd. 

Combining the results of (6) and (7) with the definition of V(n) completes the 
proof. D 

Corollary: Let f(n, k) denote the largest order of an induced subgraph of Qn 
that contains no sub-C^. Then 

4 on , 1 r 
— 8 2 + — L n + 1 , n even. /(n, 4) > 

n odd. 

Proof; This follows from Theorem 2 and the fact that f(n, 4) > 2n - 7(n) . D 

Remarks: (1) Recalling that 7fc(n) is a sum of binomial coefficients, it is in-
teresting to observe the locations of these binomial coefficients in Pascalfs 
triangle. In Figure 6, the circled entries in the nth row of Pascal's triangle 
are the binomial coefficients that sum to Vi Un)' Observe t h a t t he c i r c l e d en-
t r i e s a r e "as f a r as p o s s i b l e " from the b inomia l c o e f f i c i e n t s of t he form (n/2) 
[ 6 ] . 
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1 11 55 
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0 
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0 

1 3 3 1 

4 6 4 1 

5 10 10 5 

15 20 15 6 

21 35 35 21 

(28j 56 70 56 28 

84 126 126 84 M36 

n.20) 210 252 210 120 

(165) 330 462 462 330 (l65] 

0 
0 0 

© 10 1 

55 11 1 

FIGURE 6 
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(2) A related problem appeared in the 35th W. L. Putnam Intercollegiate 
Mathematical Competition [7]; that problem asked for a calculation of S%, where 

sn
k - E t (})> * - o, i , 2. 

5. Conclusion 
mod 3 

By defining the terms l/£ and 7(n) modulo 5, we were able to obtain an 
improved lower bound for f(n, 4), the largest order of an induced subgraph of 
Qn that contains no sub-^.. In general, by working modulo m9 we can improve on 
the inequality (1) for k = m - 1; for k £ {0, 1, . . . 9 m - 1}, let 

mod m 

Then /(n, w - 1) > 2n - V (n, m). Work on determination of V(n, m), for all 
m < {0, 1, ...s n] is in progress by this author. It was originally 
conjectured that f(n, m - 1) = 2n - 7(n, m) but this is now known to be true 
only for m e {0, 1, 2} [8]. 
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