ELEMENTARY PROBLEMS AND SOLUTIONS
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Multiplying the first equation with pk, the second with p"k, and using the
easily verified formula
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we get the assertion.

Also solved by Paul S. Bruckman.
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(continued from page 288)

72;(t) represents the number of zeros of f, which are e-close to n;. By invari-
ance of the complex integral, the functions Z;(¢) are constant since the func-
tions f; wvary continuously and do not wvanish on the path of dintegration.
Hence, 7Z,;(0) = Z;(1) for each 7. This says that in a small neighborhood of
each zero of f;, there is a one-to-one correspondence of zeros of f; with zeros
of fy, in the required manner. [

In the case of our given functions, we find that the zeros of the polyno-
mial f,(2) are close to the zeros of gn(z), which lie on the circle tz] = o, as
required, and the zeros of f, get closer to the circle as n » «». B

Also solved by P. Bruckman, O. Brugia & P. Filipponi, L. Kuipers, and the
proposer.
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