
THE FIBONACCI SEQUENCE AND THE TIME COMPLEXITY OF GENERATING
THE CONWAY POLYNOMIAL AND RELATED TOPOLOGICAL INVARIANTS

Phillip G. B r a d f o r d
University of Kansas, Lawrence, KS 66045

(Submitted July 1988)

1. Introduction

In this discussion, only tame embeddings of S^ in S3 that are oriented will
be considered. All knots will be represented as regular projections and any
projection is assumed to be regular. The reader is expected to know "big 0"
notation; see [2] for example. Some knowledge of NP-Completeness is also
useful.

The algorithm analysis of the complexities is relative to the number of
crossings of a given knot projection. Also, the analytical creation of the
Conway polynomial is in the Class P. This is shown by the presentation of a
well-known algorithm used for computing the Alexander polynomial which can be
easily suited to generate the Conway polynomial in better than 0(n3) time.

The proof of the Conway algorithm having exponential worst case time com-
plexity is based on showing the existence of n crossing knot projections. Given
these particular projections, the Conway algorithm may perform <9(((1 + /5)/2)n)
operations on the various knot projections which the algorithm derives in order
to calculate the Conway polynomial.

Definition 1.1: The crossing number of a knot K is the minimum number of cross-
ings for any regular projection of the knot K.

Definition 1.2: A split link (see [10], [11]) L c S3 is a link L = £]_ u L2 where
Li and L2 are nonempty sublinks and there exist two open balls, 5j and B2 in S3

such that Bx n B2 = 0 ; and LY C B1 and L2 C B2.

Definition 1.3: A tangle (see [4]) is a portion of a knot diagram from which
there emerge only four arcs from the four "directions" NE, NW, SE, and SW, and
possibly some crossings inside.

Examples:

®<8> ©O
+1 Integer -1 Integer 0 Integer « Integer

Tangle Tangle Tangle Tangle
FIGURE 1

A tangle cannot have any knot arcs passing under or over it. The integer
tangles pictured above, denoted by the integers +1 and -1 describe all cross-
ings of any knot or link. The following three operations are the elementary
knot crossing operations.

Definitions 1.4:
1. Smoothing — This operation takes an oriented +1 or -1 integer tangle and

replaces it with an oriented °° integer tangle.

240 [Aug.

THE FIBONACCI SEQUENCE AND THE TIME COMPLEXITY OF GENERATING THE CONWAY POLYNOMIAL

Changing—This operation takes an oriented +1 or -1 integer tangle and
replaces i t with an oriented -1 or +1 integer tangle , respect ively .
Deleting—This operation takes a +1 or -1 integer tangle and replaces
i t with a 0 i-angle.

Smoothing:

3,
i t with a 0 tangle

Changing:

Deleting:

FIGURE 2

Fundamentally, the Conway algorithm is based on the first two knot opera-
tions. The operations of changing and smoothing crossings will be focused on,
although smoothing and deleting [14] and changing and deleting will also be
discussed.

Conceptually, there can be a tree of projections built during the applica-
tion of elementary crossing operations. This tree of projections will become
the basis of the complexity analysis.

A knot's tree of projections relative to changing and smoothing is built: as
follows:

If the knot K is the unknot, then the tree of projections is the trivial
tree with an unknot projection as the root with no children.

Given a knot K that is not the unknot, the tree of projections is the
binary tree with a projection of K as the root. Choose a crossing, call it J,
change the knot projection K at the crossing X to produce the knot projection
L. Take the knot projection K9 and the crossing X. Smooth it to produce the
link projection R. The right child of the root projection K is the smoothed
knot projection R and the left child of the projection is the changed
projection L. This process of smoothing and changing of knot projections and
nonsplit link projections is recursively continued always placing changed knot
or link projections as left subtrees and smoothed knot or link projections
become right subtrees. When a subtree becomes the unknot or a split link it is
a leaf having no more children. It may be observed that by changing a crossing
one can reach either the unknot or a split link. A link's tree of projections
is constructed similarly.

Examples: 0)
' \

Oo O

FIGURE

° co
. / \
oo o

3
1990] 241

THE FIBONACCI SEQUENCE AND THE TIME COMPLEXITY OF GENERATING THE CONWAY POLYNOMIAL

Notice that the trefoil and the figure eight knots have identically struc-
tured trees of projections. Any combinations of the three elementary opera-
tions consistently applied forms a tree of projections in a similar fashion. A
tree of projections is assumed to be relative to changing and smoothing unless
otherwise noted.

To quote Louis Kauffmann [10], a convenient way to get an unknot from a
knot is to perform the following operations on the knot diagram [10, p. 79]:

Choose a point p on the diagram and draw knot so that you first draw an over-crossing
line at the first encounter with a crossing, under cross at the second encounter, and
continue until you return to p.

Performing this to a knot projection and then applying Reidemeister moves can
produce the unknot in familiar form.

Definition 1.5: An unknot projection developed in this fashion is designated a
descending knot projection [6], [7]. A descending knot projection's mirror
image is, of course, an ascending knot projection.

Just as there is a rather straightforward algorithm for creating a descend-
ing knot projection there is also a straightforward algorithm for detecting an
ascending knot projection.

Definitions 1.6:
1. The unknotting number of a knot is the minimum number of changes that must

be performed to produce the unknot starting from any knot projection. The
unknotting number of a knot K is denoted by u(K) .

2. The unsmoothing number of a knot is the minimum number of smooths that must
be performed to produce the unknot or split link from any knot projection.
The unsmoothing number of a knot K is denoted by us (if) .

3. The deleting number of a knot is the minimum number of deletes that must be
performed to the crossings to produce a split link or an unknot from any
knot projection. The deleting number of a knot K is denoted del(K).

In 1970, J. H. Conway defined a polynomial, S/K(z), with integer coeffi-
cients for oriented knots and links. The polynomial can be recursively
calculated from a regular projection of a knot or link K by consistently apply-
ing the knot crossing operations of changing and smoothing.

Theorem 1.7: Every knot K has a well-defined Conway polynomial.

This is well known and a proof can be found in [11].

Surprisingly, the Conway polynomial is well defined independent of the par-
ticular sequence of smoothings and changings used to calculate it. One of the
most important facts about Conway's algorithm is that it can be applied to any
regular projection of a knot K and it will produce the same polynomial.

2. The Algorithm

Algorithm 2.1: (Conway's algorithm, see [4], [10], and [11])

Given: a projection of a knot K
Returning: the Conway polynomial of the knot K

1. Choose an orientation of the knot projection K.
2. If (K is the unknot), then:

Conway polynomial of the unknot is 1: VQ = 1

3. If (K is a split link), then:

Conway polynomial of the split link is 0: V^ = 0

242 [Aug.

THE FIBONACCI SEQUENCE AND THE TIME COMPLEXITY OF GENERATING THE CONWAY POLYNOMIAL

4 . Otherwise , when K i s not the unknot and not a s p l i t l i n k , the t r e e of p r o -
j e c t i o n s i s b u i l t accord ing to the fo l lowing formula:

vK - vL = sv M

for K, L, and M knot and/or link projections identical in all respects
except that they differ at one crossing in the following manner:

® <g> O
K L M

FIGURE 4

One must be sure to preserve the orientation and keep track of the multiple
of the indeterminant on the right smoothing edge and the constant mul-
tiples on the left changing edges.

5. Recursively repeat steps 2 through 5 with the appropriate smoothed and
changed knot and/or link projections until the entire tree of projections
is built.

6. Return polynomial VK.
7. End. •

Applying Algorithm 2.1 to a knot projection methodically generates its tree
of projections by performing changes and smoothings to the knot projection
until there are only projections of unknots or split links left. These changes
and smoothings must be performed by adhering to the following formula,

where K, L, and M are identical knot projections in every respect except for
the following significant differences at only one crossing:

<8> ® <0>
K L M

FIGURE 5

Using this relation recursively starting with any knot projection K, the
projection eventually becomes resolved into either unknots or split links and,
therefore, terminates. Notice that during step 4 of Algorithm 2.1 two new
knots are created by changing and smoothing. These new knots may have many
possible different projections, but any regular projection will suffice. The
Conway polynomial of the unknot is defined to be one (V0 = 1) and any split
link is defined to be zero (Vspiit link = 0) . The Conway polynomial of both the
Trefoil and Figure Eight knots is z + 1.

The Conway algorithm terminates when all subtrees have become either un-
knots or split links.

The unknotting number is a lower bound of the number of crossing changes we
must perform in order to construct the unknot from a given knot projection.

1990] 243

THE FIBONACCI SEQUENCE AND THE TIME COMPLEXITY OF GENERATING THE CONWAY POLYNOMIAL

Similarly, the imsmoothing number is a lower bound* The next logical question
might be: "Given any particular projection of a knot Z, how fast can Conway*s
algorithm resolve the projection of the knot Z into unknots and split links?51

Lemma 2.2: At most, [(ft/2)J is the unknotting number u(Z) of any n crossing
knot or link Z.

Proof: First, taking the case of an alternating and oriented knot or link pro-
jection Z of n crossings, orient the knot or link and then prepare to traverse
it. If the traversal begins at an overcrossing, then set out to build a
descending knot or link projection; otherwise, construct an ascending knot or
link projection.

Without loss of generality, assume that the descending variety will be con-
structed. Starting traversal at an overcrossing of the knot or link projection
every time a crossing is encountered, if it is the first encounter with the
crossing, ensure that it is an overcrossing. If It is the first encounter with
a crossing, being passed under, change It to an overcrossing. Otherwise, if it
is the second encounter with this crossing, then proceed under the crossing.
This will construct the descending knot or link in at most

r(w/2)l - 1 < I(ft/2)J

changes because it was assumed that the traversal started on an overcrossing.
Now we must contend with the nonalternatlng knot or link projection. Given

a knot or link Z with n crossings, If K has more overcrossings than undercross-
ings, then construct the descending knot projection in less than or equal to
L(ft/2)J crossing changes; otherwise, construct the ascending knot projection
similarly. D

Lemma 2.3: At most, [{n/2)\ is the deleting number del(Z) of any n crossing
knot or link Z.

The proof is similar to the proof of Lemma 2.2, and is therefore omitted.

Lemma 2.4: Given an n crossing knot or link L, at most n - 1 is the unsmooth-
ing number us(Z).

Proof: Given a projection of the knot Z with n crossings, if all n crossings
are smoothed, then there will be only unknots and unlinks remaining. After
n - 1 smooths, the knot Z will have, at most, only one crossing left, however
many associated unlinks are left. The knot with the one remaining crossing
must be the unknot. Q

Theorem 2.5: At most, given an n crossing knot, the tree of projections rela-
tive to changing and smoothing, and smoothing and deleting can have

0{((1 + /5)/2)n} projection nodes.

[Note that (1 + /5)/2 = <J>, the "golden" ratio.)

Proof: The tree of projections relative to changing and smoothing follows
directly from Lemma 2.2 and Lemma 2.4. Given a knot projection Z, build a tree
of projections that can be described by the recurrence relation

f(n) = f(n - 1) + /(n - 2) + 1
where f (p) is the number of nodes in any tree of projections of a given knot
projection with n crossings and, of course, f(0) = 1, f(l) = 1, and f(2) - 3.

The tree of projections relative to smoothing and deleting follows iden-
tically from Lemmas 2.2 and 2.3. D

Theorem 2.5 supplies an upper bound on Conway's algorithm (Algorithm 2.1).
This is due to the relation

244 [Aug.

THE FIBONACCI SEQUENCE AND THE TIME COMPLEXITY OF GENERATING THE CONWAY POLYNOMIAL

(1) V£ = VL + SVM

upon which Conway based his algorithm. Notice the similarity between (1) and
the recurrence relation that defines the Fibonacci sequence.

An implementation of Conway's algorithm may not be bounded strictly by the
upper bound established by Theorem 2.5, but any implementation of Conway's
algorithm can be made to adhere to this upper bound.

A tree of projections relative to changing and deleting has an upper bound
of 6>(2^n/2)) given an n crossing knot. Additionally, a tree of projections
relative to smoothing and smoothing, or changing and changing, or deleting and
deleting all have exponential upper bounds. In summary5 we have the following
theorem.

Theorem 2.6: At most, the tree of projections relative to any consistently
applied elementary knot operation has as an upper bound an exponential number
of nodes.

In Theorems 2.5 and 2.6 we have not yet established the existence of any
classes of knots which actually adhere to these bounds, i.e., How tight are
these bounds?

3. The Complexity

A particular class of knots with specific projections illustrates that
there exist knot projections whose trees of projection relative to smoothing
and changing, and smoothing and deleting actually satisfy the upper bound of

G{((1 + /5)/2)n}.

The class of knots is the (2, ri) torus knots and links and the Fibonacci
knots [14] Fn = 1111...1 (n lfs in Conway's notation, see [4]). The (2, n)
knots and links will all be assumed to have the projections and orientations
described below.

H — \
mmmm 3sT\

FIGURE 6

Standard projection of the (2, ri) knots and links

Throughout the rest of this discussion, the (2, n) torus knots or links
will denote the standard projections of the (2, n) knot or link. Also, given
any standard projection of a (2, ri) knot or link, smoothing and changing will
produce standard projection knots or links. This is being done because stand-
ard projections can be maintained throughout the execution of Conway's
algorithm. The Fibonacci Knot Class is defined by Turner in [14], which we
follow. Just as in [14] a knot from the Fibonacci Knot Class will be denoted
as Fn. In Conway's notation [4], Fn = 111...1 (n ones). This turns out to be
useful in the worst case analysis. Several lemmas are now presented without
proof, since they can easily be deduced via examination.

Lemma 3.1: Smoothing the specified projection of a torus knot (2, ri), for
m > 1 and n - 2m + 1, can produce the link projection (2, n •- 1). Addition-
ally, smoothing the link projection (2, ri) , for n - 2m and m > I, can produce a
torus knot projection (2, n - 1). We also point out that changing a torus knot

1990] 245

(oc e

THE FIBONACCI SEQUENCE AND THE TIME COMPLEXITY OF GENERATING THE CONWAY POLYNOMIAL

projection (2, ri) , where n = 2m + 1 and m > 1, can produce the torus knot
projection (2, n - 2). And changing the link projection (2, ri) , for n = 2 and
777 > 1, can produce the link projection (2, n - 2),

Lemma 3.1 can be verified by examination of parts of the actual torus knot
projections.

Lemma 3.2: (Turner [14]) Given a Fibonacci knot Fn deleting and smoothing a
crossing can create the following projections Fn„i and Fn-2°

An n-trefoil is n trefoils connected in the following fashion:

FIGURE 7

Lemma 3.3: Given an n-trefoil, any sequence of elementary knot operations
forms an exponential tree of projections.

Lemma 3.3 can be proved by using induction.

Definition 3.4: An AVL tree [1], [2] is a binary tree which has the property
that from any given node in the tree the depths of the right and left subtrees
differ by at most one.

Examples:

FIGURE 8

For brevity, from here the discussion is focused on the elementary opera-
tions of changing and smoothing,

The following induction establishes that applying Algorithm 2.1 to a (2, ri)
knot projection can produce an AVL tree. The Conway algorithm, given a stan-
dard projection of a (2, n) knot or link may maintain standard projections
throughout smoothing and changing. It is easily proven that any AVL tree has
exponential number of nodes, but an exact result will be found.

Theorem 3.5: A torus knot standard projection (2, n) , for n = 2m + 1 and
77? > 1, will produce a tree of projection with 9{((1 + /5)/2)n} projection nodes
provided standard projections are maintained throughout the computation of the
Conway algorithm. The same is true for a (2, ri) link projection.

Proof: By Lemma 3.1, standard projections can be maintained throughout the
construction of a tree of projections of a (2, ri) knot or link projection.
Standard projections will be maintained throughout this proof.

Claim: When Conway's algorithm is applied to a (2, ri) knot or link in standard
projection, it produces an AVL tree with the number of nodes described by the
recurrence relation

fin) = fin - 1) + fin - 2) + 1.
Proof by induction:

Basis. The unknot (2, 1) produces a trivial AVL tree. The link (2, 2)
produces an AVL tree with 3 knot projections or nodes. The trefoil (2, 3)
produces a tree with 5 nodes.

246 [Aug.

THE FIBONACCI SEQUENCE AND THE TIME COMPLEXITY OF GENERATING THE CONWAY POLYNOMIAL

Inductive hypothesis. Assume that for some number q and some function f
the standard knot projection (2, m) has an AVL tree of projections with f(jri)
nodes as long as m < q* Additionally, the standard link projection (2, m - 1)
has an AVL tree of projections with f(jn ~ 1) nodes.

Inductive step. By the inductive hypothesis, the link or knot projection
(2, q - 1) has an AVL tree of projections of size f(q - 1) . The knot or link
(2, q - 2) has a tree of projections with fiq- 2) nodes in its AVL tree. Now,
by adding the +1 integer tangle appropriately to the link or knot projection
(2, q - 1) , the knot or link projection (2, q) may be produced. Performing a
change to the standard projection of the knot or link (2, q) can produce the
knot or link projection (2, q - 2) . Smoothing a crossing of the knot or link
(2, q) may produce the link or knot (2, q - 1) projection. Making the projec-
tion of the knot or link (2, q) the root of the tree of projections with the
subtrees created by the knot projections (2, q - 1) and (2, q - 2) can make a
tree with a total of f(q - 1) + f{q - 2) + 1 projection nodes. This is true
because the tree of projections of the link or knot (2, q - 1) is an AVL tree,
and the tree of projections of the knot or link (2, q - 2) is also an AVL tree
by the inductive hypothesis. The link or knot projection (2,q - 1) has smooth-
ing and changing subtrees consisting of the trees of projection (2, q - 2) and
(2, q - 3), respectively. Since depth((2, q - 2)) - depth((2, q - 3)) < 1 where
depth(Z) is the depth of Zfs tree of projections, then depth((2, q - 1)) -
depth((2, q - 2)) < 1. Therefore, the knot or link projection (2, q) can have
an AVL tree of projections with number of nodes described by the recurrence
relation

fiq) = fiq - 1) + fiq - 2) + 1.
This means that applying Conway's algorithm to the standard projection of

(2, ri) and preserving standard projections throughout the calculation of the
Conway polynomial will produce an AVL tree of projections with the number of
nodes described by the recurrence relation

fin) = fin - 1) + fin - 2) + 1.
End of induction.

Next, the exact number of nodes, in closed form, in this tree of
projections can easily be derived by solving the nonhomogeneous, constant
coefficient difference relation of second order:

fin) - fin - 1) - fin - 2) = 1.

Given fin) - fin - 1) - fin - 2) = 1, where n > 2, with the boundary condi-
tions fiO) = 1, /(l) = 1, and f(2) = 3.

The closed form solution is easily derived using the method of variation of
constants: ,_ ,_ _ „ . '

1 + /5/1 + /5\n -1 + /5/1 - /5\" 1 (1 - /5\n "-1/ 2

+ T I H H £0(TTTI)

/5

Taking the identity

(*} £ A i + /5/ = 1 + /5L'l + /5/ ' 1 + /5
which converges to 0 as n approaches <*, noting (1 - v5)/2 < 1, 2/(1 + /5) < 1>
and, for some integer k and some constant A when n > ks

1990] 247

THE FIBONACCI SEQUENCE AND THE TIME COMPLEXITY OF GENERATING THE CONWAY POLYNOMIAL

fin) < A[—^—) ,
we obtain

Now, to show ((1 + /5)/2) = 0(f(n)): Given equation (*) and the fact that
(1 - v5)/2 < 1, then choosing a large enough constant A and some number k when
n > k,

((1 + /5)/2)n < 4((1 + /5)/2)n + 1 as n ^ ,

Hence,

/(«) = e{((i + /5)/2)"}.

This completes the proof. Q

Since the tree of projections for a (2, n) knot projection whose children
remain as standard projections has depth of at least [(n/2)J, it is quite easy
to show fin) = £(2[(n/2)J), alternatively.

Noting Theorem 2.5 and Theorem 3.5 and given any n crossing knot K, call
its tree of projections relative to smoothing and changing PK. Then the stan-
dard projection of the (2, n) knot can have a tree of projections P(2, n) that
is larger than or equal to PK.

A similar argument, along with Theorem 2.6, illustrates that the Fibonacci
Knot Class forms an upper bound on the size of a tree of projections relative
to smoothing and deleting. So we have proved

Theorem 3.6: The (2, n) knots and the Fibonacci knots Fn have trees of pro-
jections relative to changing and smoothing, and smoothing and deleting,
respectively, which can be the largest possible given a knot with n crossings.

It is left to the reader to show that the n-trefoil will produce a knot
which can have the largest possible tree of projections relative to changing
and deleting within a constant.

It has been established that there are knot projections (and link projec-
tions, for that matter) whose trees of projections can have an exponential
number of nodes relative to the number of crossings in the projections. The
tree of projections may be built as needed and taken apart immediately
afterward.

Any operation on the nodes of the tree of projections of a knot can be
considered the fundamental operation. The operation of checking for an unknot
or split link seems to fit the bill best (see Algorithm 2.1). This is because
the appearance of the unknot or split link indicates a leaf node in the tree of
projections with no children; hence, the algorithm may stop smoothing and
changing down that particular branch of the tree.

And now a nice application: Denoting the Conway algorithm by C.

Theorem 3.7: CWorst in) = 0((1 + /5)/2)n); or the Conway algorithm has expo-
nential worst cast time complexity.

The Conway algorithm, given any knot projection K is invariant since the
Conway polynomial of the knot K is well defined given any knot projection of K
(Theorem 1.7). Let n denote the number of crossings of a particular knot. By
Theorem 3.5, using C in constructing the Conway polynomial of the standard
projection of the torus knot (2, n), it is possible to produce an exponential
tree of projections. So, CworstOO has exponential time complexity dominated by
Oiiil + /5)/2)) unknotting checks. Q

Corollary 3.8: Any polynomial invariant constructed by any consistent combina-
tion of knot operations (changing, smoothing, and deleting) on a knot

248 [Aug.

THE FIBONACCI SEQUENCE AND THE TIME COMPLEXITY OF GENERATING THE CONWAY POLYNOMIAL

projection is of exponential worst case cost. Provided the operations are
performed to the given knot projection until all of the derived knot or link
projections are resolved into unknots and split links at least.

This is true, since these operations are irrespective of the unknown's and
their coefficients.

For example, take the Homfly polynomial [6] of a knot K, Homfly^Cx, y, z) ,
which can be calculated in a similar fashion to Algorithm 2.1. The Conway
polynomial of the same knot YK(z) can then be created by setting x = 1 and y =
1, resulting in Homfly (1, 1, z) = VK(z).

It might be noted that Conway's algorithm has a constant best case time
complexity. It seems to be a very hard problem to decide the average case time
complexity of Conway's algorithm.

Theorem 3.9: The act of creating the Conway polynomial is in the class P.

This will be proved by the presentation of an algorithm which can determine
the Conway polynomial in better than (9(n3) time.

Algorithm 3.10: (Aversion of Alexander's Algorithm, [3]; see also [13])

Given: a projection of a knot K.
Returning: the Conway polynomial of the knot K.

1. Choose an orientation of the knot projection K. Label the crossings from
Z]_ to Xn for a knot with n crossings.

2. Create an n by n matrix, calling it mat, filling all entries of mat with
zeros.

3. Fill the entries of the matrix as follows:
Each crossing is associated with a column of the matrix.
for col : = 1 to n do

Say crossing col is:

FIGURE 9

Then let

endfor

mat[/c, col]
mat[i, col]
mat[j, col]

= 1 -
= z
= -1

and column of the matrix mat producing a (n - 1) x (n - 1) 4. Disregard any row
matrix.

5. Calculate the determinant of the matrix produced in step 4.
6. The polynomial created by computing the determinant is the Alexander poly-

nomial.
7. The Alexander polynomial is converted to the Conway polynomial by noting

/SK(z2) = VK (z - z~l) where equality is up to multiples of ±zn.
8. Normalize A x 0 2) into !K(z). Return VK(z).
9. End.

This algorithm clearly terminates, and the computationally time consuming
part of Algorithm 3.10 is step 5, calculating the determinant. Step 5 can be
done by a straightforward algorithm in 0(n3) time. For example, performing

1990] 249

THE FIBONACCI SEQUENCE AND THE TIME COMPLEXITY OF GENERATING THE CONWAY POLYNOMIAL

Gaussian elimination followed by multiplication along the diagonal computes a
determinant m time. There are other algorithms which can compute this
in slightly better time. The fact that the matrix is sparse, only having three
nonzero elements in each column, can also be taken into account.

This 0(n3) complexity is the same given any n crossing knot projection.
Therefore, denoting Alexander's algorithm as Alex, it must be that

A l e x best(n) = A l e x worst(n) = Alexaverage M = 0(n3),
assuming Gaussian elimination followed by multiplication along the diagonal is
used to calculate the determinant. Hence, the act of creating the Conway
polynomial is in the class P.

4. Conclusion

In this paper it is established that the consistent application of elemen-
tary knot operations may lead to an exponential number of derived knot projec-
tions. This illustrates that Conway's algorithm has exponential worst case
time complexity. Moreover, the nonvacuous upper bound on the worst case com-
plexity is based on the golden ratio. It was then illustrated that a
determinant based algorithm given by Alexander is of polynomial time com-
plexity; hence, calculating the Conway polynomial is in the class P. It is
interesting to note that Jaeger [8] has shown the calculation of the Homfly
polynomial to be in the class /i/P-Hard.

Corollary 3.8 shows that this complexity analysis can be applied to the
calculations of the Jones polynomial [9], the Homfly polynomial [6], the Kauf-
fman polynomial [12, Appendix], and many other polynomial invariants of knots
and links.

Hopefully, algorithms for the calculation of knot polynomials will receive
more attention in the future. Many interesting questions remain open. It is
presently unknown whether any knot polynomial can detect knottedness. Yet
Fellows & Langston [5] have recently nonconstructively shown that detecting
knotlessness is in P. So the quest is on to find some invariant, knot
polynomial or otherwise, that can recognize the unknot in polynomial time.

Acknowledgments

I owe a great deal to Jim Hoste for introducing me to knot theory and for
his suggestions regarding this paper. I must also give my gratitude to Yair
Minsky for his helpful criticisms. The referee's comments were also helpful.

References

1. G. M. Adelfson-Vel'skii & Y. M. Landis. "An Algorithm for the Organization
of Information." Soviet math. Dokl. 3 (1962):1259-62.

2. A. V. Aho, J. E. Hopcroft, & J. D. Ullman. The Design and Analysis of
Algorithms. New York: Addison Wesley, 1974.

3. M. A. Armstrong. Basic Topology. New York: Springer Verlag, 1983.
4. J. H. Conway. "An Enumeration of Knots and Links, and Some of Their Alge-

braic Properties." In Computational Problems in Abstract Algebra. Ed. John
Leech. New York: Pergamon Press, 1970, pp. 329-58.

5. M. R. Fellows & M. A. Langston. "Nonconstructive Tools for Proving
Polynomial Decidability." Journal of the Assoc, for Comp. Mach. 35. 3 (July
1988):727-739.

6. P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, &.. A.
Ocneau. "A New Polynomial Invarient of Knots and Links." Bull. Amer. Math.
Soc. 12. 2 (April 1985):239-46.

250 [Aug.

THE FIBONACCI SEQUENCE AND THE TIME COMPLEXITY OF GENERATING THE CONWAY POLYNOMIAL

7. J. Hoste. Personal Note, 1986.
8. F. Jaeger. "On Tutte Polynomials and Link Polynomials, Laboratoire Styruc-

turs Discretes et Didactique." Rapport de Recherche Imag France, Mai 1987.
9. V. F. R. Jones. "A Polynomial Invarient for Knots via von Neumann Alge-

bras. Bull. Amer. Math. Soc. 12 (1985):103-12.
10. L. H. Kauffman. Formal Knot Theory. Mathematical Notes 30. Princeton, NJ:

Princeton University Press, 1983.
11. L. H. Kauffman. "The Conway Polynomial." Topology 20 (1980):101-08.
12. L. H. Kauffman. On Knots. Mathematical Notes: Annals Study 115. Princeton,

NJ: Princeton University Press, 1987.
13. H. F. Trotter. "Computations in Knot Theory." In Computational Problems in

Abstract Algebra. Ed. John Leech. New York: Pergamon Press, 1970, pp. 359-
64.

14. J. C. Turner. "On a Class of Knots with Fibonacci Invarient Numbers."
Fibonacci Quarterly 24A (1986):61-66.

1990] 251

