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1. Introduction 

One of the many interesting problems posed in the book Unsolved Problems in 
Number Theory [1] concerns the sequence 

nxn = x™_1(xn_l + n - 1), x1 e N. 

It was introduced by Fritz Gobel and has been studied by Lenstra [1] for m = 1 
and X]_ = 2. Lenstra states that xn is an integer for all n < 42, but x^-^ is 
not. For m = 2 and x^- 2, David Boyd and Alf van der Poorten state that for 
n < 88 the only possible denominators in xn are products of powers of 2, 3, 5, 
and 7. Why do these denominators cause a problem? Is it possible to find even 
longer sequences of integers by choosing different values of x^ and ml These 
questions were posed by M. Mudge [2]. 

The terms in these sequences grow fast. For m = 1, X\ = 2, the first ten 
terms are: 

3, 5, 10, 28, 154, 3520, 15518880, 267593772160, 160642690122633501504. 

If the number of digits in xn is denoted N(n) , then 7/(11) = 43, //(12) = 85, 
/1/(13) = 168, 7/(14) = 334, 71/(15) = 667, 7/(16) = 1332, and 7/(17) = 2661. The 
last integer in this sequence, x^2y has approximately 89288343500 digits. 

The purpose of this study is to find a method of determining the number of 
integers in the sequence and apply the method for the parameters 1 < 777 < 10 and 
2 < Xi < 11. In particular, the problem of Boyd and van der Poorten will be 
solved. Some explanations will be given to why some of these sequences are so 
long. It will be observed and explained why the integer sequences are in 
general longer for even than for odd values of m. 

2. Method 

For given values of x± and m consider the equation 

(1) kxk = xk_ 1(x™_1 + k - 1) 
where the prime factorization of k is given by 

(2) k = \\VT • 
i= 1 ̂  

Let us assume that x^^i is an integer and expand x^ _ ]_ and #£_]_ + k ~ 1 in a 
number system with G^ = p.tf, (t^ > n^) as base. 

(3a) xk.1 = X>adGi (0 " aJ K Gi} 

and 

(3b) x™_x + k - 1 = E bjG( (0 < bj < GJ. 
J 

Since tf^ _ i * 0, it is always possible to choose t^ so that a^ * 0 and b^ * 0. 
With this t^ we have 

(4) Xk-l(Xk-l + ̂  ~ 1) = E ajhlGi ~ aQhQ ^ m ° d G0' 
J, t 
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The congruence 

(5) kxk = aQbQ (mod G±) 

is soluble iff (k, Gi)\a0bQ, or, in this case, iff pni\a0b0. But, if pni\a0b0, 
then by (4) we also have z ^ 

P^lXk-l^k-i + k - D-
Furthermore, if (5) is soluble for all expansions originating from (2), then it 
follows that 

k\xk-\(xk-i + k - l) 
and, consequently, that xk is an integer. The solution xk (mod Gi) to kxk = 
a§b§ (mod Gi) is equal to the first term in the expansion of xk using the 
equivalent of (3a). The previous procedure is repeated using (3b), (4) , and 
(5) to examine if Xj^ + i (mod G^) is an integer. 

From the computational point of view, the testing is done up to a certain 
pre-set limit k = kmaK for consecutive primes p = 2, 3, 5, 7, ... to p < kmaK . 
One of three things will happen: 

1. All congruences are soluble modulus G^ for k < kmax for all p . < fcmax. 

2. a0^o = 0 fo r a certain set of values k < kmax , p . < kmaK. 
3. The congruence kxk E a0^o (mod G^) is soluble for all k < n < kmaxs but 

not soluble for k = n and p = p . . 

In cases 1 and 2 increase kmax, respectively, t^ in G^ = p ^ (if computer faci-
lities permit) and recalculate. In case 3, xn is not an integer, viz. n has 

: k < n 

Results 

been found so that xk is an integer for k < n but not for k = n. 

The results from using this method in the 100 cases 1 < m < 10, 2 < x± < 11 
are shown in Table 1. In particular, it shows that the integer sequence holds 
up to n = 88 for m = 2, Xi = 2 which corresponds to the problem of Boyd and van 
der Poorten. The longest sequence of integers was found for Xi = 11, m = 2. 
For these parameters, the 600 first terms are integers, but ^501 ̂ s not* ^n 

the 100 cases studied, only 32 different primes occur in the terminating values 
n. In .7 cases, the integer sequences are broken by values of n which are not 
primes. In 6 of these, the value of n is 2 times a prime which had terminated 
other sequences. For X\ = 33 m = 10, the sequence is terminated by n - 2 * 132. 
The prime 239 is involved in terminating 10 of the 100 sequences studied. It 
occurs 3 times for m = 6 and 7 times for m = 10. It is seen from the table 
that integer sequences are in general longer for even than for odd values of m. 

TABLE 1. xn is the first noninteger term in the sequence defined by 
nxn = x

n-i(Xn-\ + n ~ 1)• T n e t a ° l e gives n for parameters xl and m. 

m 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

x1= 2 

43 
89 
97 
214 
19 
239 
37 
79 
83 

239 

xl = 3 

7 
89 
17 
43 
83 

191 
7 

127 
31 

338 

x1 = 4 

17 
89 
23 

139 
13 
359 
23 

158 
41 
139 

xx = 5 

34 
89 
97 

107 
19 

419 
37 
79 
83 

137 

xx = 6 

17 
31 

149 
269 
13 
127 
23 

103 
71 

239 

xx = 7 

17 
151 
13 

107 
37 

127 
37 

103 
83 
239 

xx = 8 

51 
79 
13 
214 
13 
239 
17 

163 
71 

239 

xx = 9 

17 
89 
83 

139 
37 

191 
23 

103 
23 

239 

x1 = 10 

7 
79 
23 

251 
347 
239 
7 

163 
41 
239 

xx = 11 

34 
601 
13 

107 
19 

461 
37 
79 
31 

389 
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4. A Model To Explain Some Features of the Sequence 

The congruence 

x(k) = a{k) (mod p), a(k) e {-1, 0, 1, ..., p - 2} 

studied in a number system with a sufficiently large base pt
9 is of particular 

interest when looking at the integer properties of the sequence. Five cases 
will be studied. These are: 

1. a(k) does not belong to cases 2, 3, 4, or 5 below 
2. a(k) = -1, p * 2 
3. a(k) = 0 
4. a(fc) = 1 
5. a(/c) = a(fc + 1) and/or a(k) = a(fc - 1), a(k) * -1, 0, 1 

These cases are mutually exclusive; however, in case 5 there may be more than 
one sequence of the described type for a given p, for example, for m = 10, x-^ = 
7, and p = 11, we have a(k) = 7 for k = 1, 2, ..., 10 and a(k) = 4 for k = 11, 
12, ..., 15. Therefore, when running through the values of k for a given p, it 
is possible to classify a(k) into states corresponding to cases 1, 2, 3, 4 or 
into one of several possible states corresponding to case 5. In this model, 
a(l) appears as a result of creation rather than transition from one state to 
another but, formally, it will be considered as resulting from transition from 
a state 0 (k - 0) to the state corresponding to a(l). 

The study of transitions from one state to another in the above model is 
useful in explaining why there are such long sequences of integers and why they 
are in general longer for even than for odd m. Table 2 shows the number of 
transitions of each kind in the 100 cases studied. Let aT be the number of 
transitions from state r to state s: 

Ar = £ a P S,
 Bs = Z ars> Qs = 100AJBS. 

r s 
(Note that r and s refer to states not rows and columns in Table 2.) The tran-
sitions for odd and even values of m are treated separately. It is seen that 
transitions from states 4, 5, and 2 (for even 77?) are rare. Only between 5% and 
14% of all such states "created" are "destroyed," while the corresponding 
percentage for other transitions range between 85% and 99%. It is the fact 
that transitions from certain states are rare, which makes some of these inte-
ger sequences so long. That transitions from state 2 are rare for even m (11%) 
and frequent for odd m (99%) make the integer sequences in general longer for 
even than for odd m. In all the many transitions observed, it was noted that 
certain types (underscored in Table 2) only occurred for values of k divisible 
by p, while other types never occurred for k divisible by p. Transitions from 
state 3 all occur for k divisible by p but, unlike the other transitions which 
occur for k divisible by p, they have a high frequency. Some of the observa-
tions made on the model are explained in the remainder of this paper. 

TABLE 2. The number of transitions of each type for odd and even m 

From 
state 

0 
1 
2 
3 
4 
5 

Bs 

Qs % 

To s 
l\m 

467 

181 
202 
20 
2 

872 
92 

tate 1 
2\m 

1847 

55 
634 
35 
2 

2573 
95 

To state 2 
2fm 
38 
220 

36 
2 
1 

297 
99 

2\m 

40 
701 

30 
6 
2 

779 
11 

To state 3 
2\m 

60 
252 
71 

39 
0 

422 
85 

2\m 

60 
791 
21 

12 
3 

887 
86 

To state 4 
2\m 

55 
247 
39 

111 

0 

452 
14 

2\m 

55 
642 
7 

80 

2 

786 
8 

To state 5 
2\m 

32 
75 
2 
9 

2 
120 
5 

2\m 

69 
307 
0 
16 
3 

11 

406 
5 

A 
2\m 

652 
794 
293 
358 
61 
5 

2163 

r 
2\m 

2071 
2241 
83 
760 
56 
20 

5431 
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Transitions from state 4 and, for even m only, from state 2 
It is evident from kxk = xk-i(xk-i + k - 1) that, if xk„i = ±1 (mod p) and 

(k, p) = 1, then xk = ±1 (mod p ) . Assume that we arrive at x^^i E ±1 (mod p) 
for k < p - m and m < p. We can then write 

(6) Xp_w_i = ±1 + up (mod p 2 ) , 0 < a < p 
and 

(7) xp-m-i E (±]- + a P ) m E l ± m P (mod P2) (̂  even). 

Equations (6) and (7) give 

(p - m)xp_m ~ ±(p - m) (mod p2) 

or, since (p - m, p) = 1, 

x E ±1 (mod p2) or xk = ±1 (mod p2) for p - m < k < p - 1. 

For A: = p, we have 

pxp E ±1(1 + p - 1) (mod p2) 

or, after division by p throughout 

xp E ±1 (mod p). 

It is now easy to see that xk = 1 (mod p) continues to hold also for k > p. 
The integer sequence may, however, be broken for k = p2. 

Transitions from state 3 

Let us assume that Xj = 0 (mod p) for some j < p. If (j + 1, p) = 1, it 
follows that tfj + i = 0 (mod p) or, generally, xk E 0 (mod p) for j < k < p - 1. 
For k = p - 1, we can write tfp_i = pa (mod p 2 ) , 0 < a < p - 1. We then have 

pxp E pa(pmam + p - 1) (mod p 2 ) , 

from which follows xp E -a (mod p), viz. xp is an integer; however, if a|0, the 
state is changed. 

Transitions from states of type 5 

When, for some j < p - 1, it happens that xj = 1 (mod p), it is easily seen 
that xk E Xj (mod p) for j < k < p. This implies 

pXp E x j Q + p - l ) (mod p) , 

from which it is seen that xp may not be congruent to Xj (mod p) but also that 
xp is an integer. 
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