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"What is the use," thought Alice, 
"of a book without pictures and 
conversations?..." 
Alice's Adventures in Wonderland, 

—Lewis Carroll 

1. Introduction 

In this paper we show how the two well-known integer representation theo-
rems which are associated with the name of Zeckendorf may be generalized as 
dual systems by constructing colored tree sequences whose shade sets partition 
Z+ = {1, 2, . . . } . Many interesting properties of the representations can be 
observed directly from the tree diagrams, and the proofs of the properties can 
truly be said to be "evident" or "obvious"; we shall not translate such proofs 
into other symbolic forms. 

The Zeckendorf theorems are about representations of positive integers as 
sums of distinct elements of given number sequences. The first theorem is in 
Lekkerkerker [6], and a dual of it is given by Brown [2]. Early papers on 
properties of the Zeckendorf integer representations are Zeckendorf [12] and 
Brown [1]. Klarner [5] gives an excellent review of the literature to 1966, 
and extends many of the theories to that date. In [3] Carlitz et al. (1972) 
define Fibonacci representations of integers, and study their properties. 

In Turner [7] we showed how to construct certain tree sequences and defined 
their shade sets, which together demonstrated the Zeckendorf representation 
theorems. In Zulauf & Turner [13], we showed how the shade sets could be 
defined in a set-theoretic notation, and proved the Zeckendorf theorems in a 
concise manner. In Turner [8] and Turner & Shannon [9] we defined Fibonacci 
word patterns and used them to study tree shade sets. 

Notation and definitions for integer representations 

(i) Let c = {<?!, <?2> c3» •••} De any sequence of distinct real numbers, and 
let N E Z+ (i.e., N is a positive integer). We shall be concerned with 
representations of N of the form 

(1.1) N = ± ei0i, 
i = 1 

where n > 1 and e^ € {0, 1} for each i . 
In this paper c will be a strictly increasing sequence of nonnegative 
integers. Once c is given, the vector e = {e\ , ..., en } determines the 
representation. 

(ii) (as in [4]): The sequence c is complete with respect to the positive 
integers if and only if every integer /!/ e Z+ has a representation of the 
form (1.1). 

(iii) (see [4]): If the number of elements of c used in a representation is as 
small as possible, the representation is said to be minimal; if it is 
the largest possible, then the representation is maximal. 
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The dual Zeckendorf theorems 

We shall use the notation Z and Z* when referring to these theorems and 
related properties. 

Theorem 1.1 (Z; [6], [12]): Every N e Z+ has one and only one representation 
in the form (1.1) with c = {un] = {Fn + l} = {1, 2, 3, 5, . ..}, the, Fibonacci 
sequence, and with the coefficients e^ satisfying en = 1, and e^e^+i = 0 if 
1 < i < n. 

Moreover, these representations are minimal; and for a given value of n 
there are Fn integers having Zeckendorf representations. 

Theorem 1.2 (the dual, Z,f; [2]): Every N 6 Z+ has one and only one represen-
tation in the form (1.1) with c = {un}, e^ e {0, 1}, en = 1, and e^ + &i+\ * 0 
if 1 < i < n. 

Moreover, these representations are maximal; and for a given value of n 
there are Pn+\ integers having Zeckendorf representations. 

The generalization in this paper: 

In Section 2 we show how to construct classes of colored tree sequences 
tfhose shade sets exactly cover Z+, and hence derive classes of complete sequen-
ces of integers (those used to color the trees). From these classes we select 
"wo which are dual in a sense that generalizes the dual conditions e^ei + i = 0 
and e^ + e^+1 * 0 used in the Zeckendorf theorems 1.1 and 1.2, respectively. 
Chus, we obtain a class of dual integer representation theorems, of which the 
Dair (Z, Z'r) is the simplest case. 

2. Colored Trees and Their Shades 

Definitions 

(i) A tree is a set of n nodes (or points), and a set of n - 1 edges (lines 
joining pairs of the nodes), having no cycles (paths from a node which 
return to that node). 

(ii) If one node in a tree is distinguished, and labelled as a root, we have 
a rooted tree. 

(iii) If real numbers (in this paper integers) are assigned to the nodes of a 
rooted tree, we have a number tree. We call the numbers colors of the 
nodes. 

(iv) A node, other than the root, which has only one edge attached to it is 
called a leaf. There is a unique path from the root to any given leaf. 
The sum of the colors on a root-to-leaf path is called the shade of the 
path. 

(v) The set of shades of all root-to-leaf paths in a rooted tree is the 
shade set (or shade) of the tree. 

Generation of a 3-parameter class of colored tree sequences 

Suppose we are given a coloring sequence of integers, denoted by c E CQ, 
C\> Ci* •••> on, ...; and also an initial sequence of i rooted trees denoted by 
TQ, TI, ..., T^_i, each of whose nodes is colored by a member of c. 

Then we can continue the tree sequence in the following way. 

For the nth tree, take a fc-fork (with k < n) and color its root node eH. 
Select an ordered subsequence of the TQ , T\, ..., Tn-i, of length k and using 
consecutive members, and mount them one by one from left to right on the k 
prongs on the fork. The following diagram makes this construction clear: 
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(2.1) 

with k < j < n + 1. 
Any selection of values for the triple (i, j, k) will determine a sequence 

of colored trees, so the construction just defined determines a 3-parameter 
family of such trees. We shall also allow j, k to be functions of n. 

Tree sequences with shade sets exactly equal to Z^: 

We investigate now the choices of c, the triple (i, j, k) , and the initial 
trees such that they will lead to a sequence of trees having shade set Z^ = {0, 
1, 2, ... }. We shall require this to happen exactly; which is to say that if 
Zm denotes the shade set of the mth tree Tm of a sequence we shall require 

777= 0 
z+o and Z„ n Z, when u * V. 

Examples 

Before giving a general result, we shall give three examples to illustrate 
the various concepts introduced above. The first two provide graphical proofs 
of the dual Zeckendorf theorems; we treated these in [7] and [13]. The third 
gives an indication of the generalization we are aiming at, and we give the 
first seven trees of its sequence. 

Example 1 (Zeckendorf, Z) 

Parameter values: (i, j s k) 
Color sequence: 

(2 , n + 1, n - 1) ( for Tn) 
{0, U\, U2> •*•} where un = Fn+i. 

. . ' I V N 0 1 
T0 Tl T2 

Example 2 (Zeckendorf dual, Z*) 

Parameter values: (i, j, k) = (2, 3, 2) 
Color sequence: {0, u\, u^, ...}. 

. /v 
Example 3 (gap range 1, 2) 

Parameter values: (i, j, k) = (3, 4, 1) 
Color sequence: {0, 1, 2, 3, 4, 5, 7, ...} with cn = en_2 + cn-3-> 

for n > 5. 

.. :v v 0 1 2 3 
TQ Tl T2 T3 Ti, 

232 [Aug. 



GENERALIZATIONS OF THE DUAL ZECKENDORF INTEGER REPRESENTATION THEOREM 

For t h i s l a s t example, i t may be observed t h a t t h e sequence of t r e e shade s e t s 
{ Z n } , n = 0 , 1, 2, . . . i s 

{{0} , {1} , {2} , {3S 4 } , {5 , 6 } , {7, 85 9 } s {10, 1 1 , 12, 13} , . . . } . 

It is also seen that the number of leaves in Tn is cn-2_ after n = 5. It should 
be evident that with this color sequence and method of tree construction the 
shade set sequence will continue through the positive integers. Thus, the 
shade set covers ZQ exactly. So, given any positive integer N, it will 
correspond to the shade of just one root-to-leaf path in one tree of this 
sequence of colored rooted trees. It is easy to derive a formula to tell 
which. We shall not do this here, but rather remark upon the fact that the 
numbers (colors) on that root-to-leaf path constitute a representation for N as 
a sum of distinct members of c. Thus, c is complete for Z+. Moreover, because 
of the parameter values (£, j, k) and the construction process, we can state, 
from the following illustration, that the representation for N has gaps in its 
constituent colors of either 1 or 2 (i.e., at least a gap of 1 and at most a 
gap of 2) . 

Take N = 12, for example. This occurs in the shade of T7. The third root-
to-leaf path from the left gives the representation 

12 = 1 + 4 + 7 = cl + ch + c6. 

The binary representation (i.e., the vector of ^-values) is (0, 1, 0, 0, 1, 0, 
L). The "gaps" referred to above can now be seen as runs of 0?s occurring 
Detween the l's. All representations from this tree sequence will have a gap 
of 1 zero or 2 zeros between every pair of adjacent l's. A graphical "proof" 
of this is to write the construction rule thus, where the color gap sizes 
occurring are indicated on the fork edges: 

Tn-3 Tn~2 

m ._ \ / s for n > 3 n "~ \ / 

°n 

It is evident that in every tree beyond the third a 2 or a 1 must occur on 
every edge, and hence only gaps of 2 and 1 occur in all root-to-leaf path sums. 

The reader may care to check that similar reasoning applied to the trees of 
Examples 1 and 2 will verify the dual Zeckendorf theorems, with their gap 
properties that e^ei^i = 0 and e^ + ei + i x 0> respectively. 

Before going on to define the dual classes which generalize the Zeckendorf 
theorems, we give an indication of how studies of Fibonacci word patterns [8] 
occurring on the tree sequences can provide theorems about properties of 
integer representations. Referring to Example 2, for instance, suppose we wish 
to investigate the occurrence of integer representations with the Zeckendorf 
dual properties and which contain u\ = 1 (i.e., also e\ = 1). Examining the 
trees, we see that U\ = 1 occurs only on leaf nodes. It is easy to derive 
formulas for the number of z-q's occurring in tree Tn (it is obviously Fn) , and 
for the pattern of the occurrences. Details of the pattern are given in [8]; 
briefly, the pattern starting with T^ is given by the Fibonacci word juxtaposi-
tion recurrence formula 

Wn + 2 = WnWn + i , with Wi = 1 and h/\ - 01. 
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This gives the pattern (which is the leaf-node color pattern) 1, 01, 101, 
01101, ... . The positions of the lfs are the places 1, 3, 4, 6, 8, 9, ... and 
of the 0?s are 25 5, 75 105 . . . . These two sequences are the well-known 
Wythoff number sequences, given by {[an]} and {[a^n]} , respectively, where a = 
%(1 + /5) and [x] is the greatest integer function ([8] and [11]). Similar 
analyses lead to similar conclusions for the placings of the other colors in 
the tree sequence. 

To study relative positions and frequencies of occurrences of integer 
representations from Example 3, it is necessary to solve the third-order 
recurrence given for cn; and to study the corresponding word pattern recurrence 
Wn + 3 = WnWn + i with initial words Wi = 0, ¥2 - 1* ^3 = 2. 

3. Generalized Dual Zeckendorf Theorems 

We choose parameter values for (i, j, k) in (2.1) so that two dual tree-
sequence classes are defined. With suitable choices of initial trees, and of 
coloring sequences, we shall ensure that the first one (designated the GZ-
class) generates integer representations such that all gaps in the e-vectors 
have at least g* zeroes; and that the second one (designated the £Z*-class) 
generates integer representations with all gaps having at most g* zeroes. To 
be precise, we define a gap g to be a run of g zeroes occurring between two 
successive l's in an g-vector. The conditions "at least g* " and flat most g*" 
on the gap sizes in the g-vector representations are the dual conditions. We 
note immediately that the £Z-class will contain the sequence of Example 1, 
since the conditions ejej+i - 0 and g > 1 are equivalent. Likewise, the GZ*-
class contains the sequence of Example 2, since the conditions ej + &j+i * 0 
and g < 1 are equivalent. 

The following tables give definitions, and the first few color sequences 
and corresponding tree sequences as examples. 

TABLE 1. Definitions 

GZ-class 

Gap sizes: g > g* 

Parameter: (i, j, k) = (g* + 1, n + 1, n - g*) (for Tn) 

Color sequence: on + i = on + c„ + ^_]_ 

Initial colors: 0, 1, 2, ..., i 

Initial trees: {©|r = 0, .„., i - 1} 

General solution for c is given in §4 

GZ*-class 

9^9* 

(i, j, k) = (g* + 1, g* + 2, g* + 1) 

Cn+i = °n + ^n+1 + ••• + Cn+i-l 

0, 2° , 21, 22, ..., 2i~l 

The first i + 1 trees of {Tn} are 
given by: 

]0 ^1 ••• Tt_i 

® ® ® 
0, 1, ..., 2t_1,... 

with 2 < t < i . 

General solution for c is given in §4 
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TABLE 2. Example Sequences 

9* 

1 
2 
3 

1 

2 

CZ-Class 

0, 1, 2; 3 , 5 , 8, 13, . . . 
0 , 1, 2 , 3 ; 4 , 6, 9, 13 , . . . 
0, 1, 2 , 3 , 4; 5 , 7, 10, 14, . . . 

Tree Sequences (g > g*) 

0 1 2 3 5 

0® 0® 1® Ofl 1* 2» 

0 1 2 3 4 6 

£Z*-Class 

0, 1, 2; 3 , 5 , 8, 13 , . . . 
0 , 1, 2 , 4 ; 7, 13 , 24, 44, . . . 
0 , 1, 2 , 4 , 8; 15, 29, 56 , . . . 

Tree Sequences (g < g*) 

0 1 2 3 

0 « \% 0 * 1 

,.'VT N 
0 1 2 4 

0® l« 

o \ / 
• * 11 2 V 

4 J 

It should be noted that, since the shades of all the tree sequences in both 
the GZ- and £Z*-classes exactly cover ZQ, all the color sequences used (with 
?0 = 0 deleted) are complete for Z+. 

Within each pair of tree sequences, for each value of g* > the root-to-leaf 
paths give integer representations using distinct colors and with gaps satis-
fying g > g* and g < g*, respectively. Those on the tree sequences with g* = 1 
are the dual Zeckendorf representations. 

As we said in the Introductions there is hardly a need for formal proofs of 
the above statements about the integer representation properties. They all 
follow by induction, using the definitions of the procedures for constructing 
the colored trees. Study of the general tree diagram tells all! As Alice 
thought, in Wonderland: "What is the use of a book without pictures... ." 
However, to demonstrate the reason for the choices of (t, j , k) in the two 
classes, we shall give some details of the proofs. The key property to 
establish is that the shade sets of the trees in any sequence partition ZQ. 

Theorem: Each tree-sequence in the two classes defined in Table 1 has shade 
set exactly equal to ZQ = {0, 1, 2, ...}. 

Proof: We shall use induction, for sequences in each class. 

Case (i) Let T = {Tn} be a tree-sequence in the £Z-class. 

The first i trees in T have shades 0, 1, . .., (i - 1), respectively, by the 
definitions of initial colors and initial trees given in Table 1. The 
(i + l)t h tree is 

since k = n - g = i - ( i - l ) = l (meaning there is a 1-fork) , and n - j + 1 
= n - ( n + l ) + l = 0 (meaning that TQ is mounted on it). Here we have used 
the formulas given in Table 1 for the parameters (£, J, k) in the GZ-class. 

Thus, Ti has shade 0 + % = i 5 which continues the shade sequence required 
by the theorem. 

We now make the inductive hypothesis that the shade sets continue as for 
the theorem, up to the last (rightmost) branch of tree Tn, with n > i. 
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Referring to the construction diagram (2.1), inserting parameters j = n + 1 
and k = n - g*, we find that TQ is mounted on the first (leftmost) branch of 
the fc-fork used to construct Tn. This is also true for Tn + 1, etc. Hence, the 
leftmost branch shade of Tn+i is cn+i + 0 = cn+1. 

Now, the rightmost branch shade of tree Tn is cn + (rightmost branch shade 
of Tn-g*_i), which, by the inductive hypothesis, equals cn + (cn-g* - 1). 
Then, since on + cn_g* ~ on + cn-^+i = ^n+l (using parameter and color sequence 
definitions), we have shown that 

(leftmost branch shade of Tn+1) = (rightmost branch shade of Tn) + 1. 

Hence, the shade of Tn + i follows on in natural sequence from that of Tn. This 
completes the inductive proof. 

Case (ii) Let T = {Tn} belong to the £Z*-class. 

We proceed as for Case (i); we shall omit the details showing that the shades 
of TQ, T]_, . .., Ti + i conform to the theorem. 

Assume that the shade of the tree sequence TQ, T\, ..., Tn, with n > i + 1, 
is a sequence 0, 1, 2, ..., p. We shall show that the first element of the 
shade of ?„ + 1 is v + 1. 

Let us use the notation Ln, Rn to mean, respectively, the "leftmost branch 
shade of tree Tn

u and the "'rightmost branch shade of tree Tn." We have to show 
that Rn + 1 = Ln + i> From the construction diagram (2.1), and inserting the 
parameters for j , k from Table 1 for the £Z*-class, we see that 

Rn = cn + Rn (= cn + Ln ~ 1); 
and 

Ln + l = °n + \ + Ln-g* (= ^ n + Gn-\ + ••• + en_g* + Ln_g*). 
Now 

Ln = °n + Ln-g*-l = °n + (Ln-g* ~ °n-g*-0» 
using the fact that, for n > 1, the cardinal number of the shade set of Tn is 
equal to cn : this is easily established by induction, for the trees in GZ*. So 
we have 

Rn + 1 = on + Ln = 2cn - cn_g*-i + Ln_g* 

— On -r Cn-i T • • • -r Cn _ g* ~r Ln__g* 
= °n + l + ^n-g* 
= Ln+1' 

The existence of the generalized dual Zeckendorf integer representations 
now follows immediately. The proof that the gap sizes satisfy conditions 
g > g* or g < g* for tree sequences in the GZ-class or £Z*-class, respectively, 
rests on simple observations of the gaps that can occur [see diagram (2.1)] 
between on and the root colors of the k trees Tn-j + i, ..., Tn.j + ]< used in the 
construction. 

The final table gives the dual representations of N - 1, 2, ..., 10 for the 
cases g* = 1 and g* = 2. Note that they are, respectively, minimal and maximal 
representations. (See Table 3 below.) 

4. Formulas for the Color Sequences in the Two Classes 

In Table 1 we gave the initial values and general recurrence equations for 
the color sequences in the GZ- and £Z*-classes. We end the paper by giving 
general solutions for the equations, which provide formulas for the terms of 
the sequences in terms of weighted sums of binomial coefficients. We also give 
geometrical interpretations for these weighted sums: they are related to the 
elements on certain diagonals of Pascal?s triangle. Thus, in a very nice 
pictorial way, we have linked the generalizations of the dual Zeckendorf 
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integer representations to generalizations of the Pascal-Lucas theorem which 
states that sums of the terms on the 45°  upward diagonals of Pascal1s triangle 
are Fibonacci numbers. 

TABLE 3. Dual Integer Representations 

N 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

£Z-Class 

g* = i 

i (i) 
2 (01) 
3 (001) 
1 + 3 (101) 
5 (0001) 
1 + 5 (1001) 
2 + 5 (0101) 
8 (00001) 
1 + 8 (10001) 
2 + 8 (01001) 

g* = 2 

1 (1) 
2 (01) 
3 (001) 
4 (0001) 
1 + 4 (1001) 
6 (00001) 
1 + 6 (10001) 
2 + 6 (01001) 
9 (000001) 
1 + 9 (100001) 

N 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

GZ*-Class 

9* = 1 

1 (1) 
2 (01) 
1 + 2 (11) 
1 + 3 (101) 
2 + 3 (011) 
1 + 2 + 3 (111) 
2 + 5 . (0101) 
1 + 2 + 5 (1101) 
1 + 3 + 5 (1011) 
2 + 3 + 5 (0111) 

9* -

1 
2 
1 + 2 
4 
1 + 4 
2 + 4 
1 + 2 + 4 
1 + 7 
2 + 7 
1 + 2 + 7 

2 

(1) 
(01) 
(11) 
(001) 
(101) 
(011) 
(111) 
(1001) 
(0101) 
(1101) 

The recurrence for the GZ-class 

We wish to index and refer to the sequences in the GZ-class, as g* ranges 
over 1, 2, 3S etc. To this end we add a superscript in brackets, to the 
expression for the nth term in the ^*th sequence. Thus, c^f denotes this 
expression. Since it is typographically clumsy to use g* as the indexing 
letter, we shall replace g* by i (note that the values for i as used here and 
subsequently are 1 less than the ones used for the parameter in Table 1). 

The recurrence equation for c^ (omitting c^' = 0 from each sequence) is 

(4.1) ^(i) = ^(i) + ^(i) 

with initial values 

e^l'-^-i = cK*'. + £?:, , for n > 1, n + ̂  + 1 n + ̂  n 5 ? 

(4.2) Ai) s for s 1, 2, ..., £ + 1. 

[Note that for i = 1 this gives the Fibonacci sequence = {Fn+1}.] 

The general solution to (4.1) and (4.2), given i, is 

(4.3) <#?i + 1 = E (" " r i ) , for n - i + 1 = 1, 1, 3, .... 
which can be demonstrated by direct substitution, and making use of the identity 

\r + 1/ \r + l) + \r) 

for the binomial coefficients. 

We use the normal convention that L E 0 when a < b.\ 

If i is small, say i = 1, 2, 3, or 4, then we can use Binet-type formulas 
to calculate the c^ efficiently for any n. If i is large, then formula (4.3) 
above is probably the most efficient way to calculate a^ exactly. 

For example, if i = 1000, then ^22 0 0 is 

(T) - (T) • r2")+ (?)• 
which equals 

1 + 2199 + 1199 x 1198/2 + 199 x 198 x 197/6 = 2014100. 
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Thus, to calculate o (1000) 2200 2014100 from the above formula requires only a few 
additions and multiplications; whereas to calculate it directly from the recur-
rence relation (4.1) could require that all the cn be precomputed for n = 
1, 2, ..., 2199. Clearly, formula (4.3) is much quicker. 

The solution (4.3) also has a nice geometric interpretation, which we show 
in the final subsection. 

The recurrence for the GZ*-class 

The recurrence equation for c*^ (omitting c i ^ = 0 from each sequence) is 

n + i + l un ^ cn + l ^ (4.4) ^*{i) 

with initial values 

(4.5) c*{i) = 2S _ 1 for s 

+ 0*U) for n > 1, 

1, 2, , i + 1. 
[Note that i = 1 again gives the Fibonacci sequence {Fn+i}.] 

By considering e*+£+i ~ c*^), and using (4.4), we find that 

(L 6) <~*CO = Jr*^ - r^(i) rt = 1 ? 
^ ' 0 J cn + i + l LCn + i C i - l 9 n 1, Z, ... . 

We used this equivalent form of the recurrence equation as a first step in 
obtaining a general solution. The details of our solution method are lengthy, 
and will be reported elsewhere. Our solution is given next, as (4.7): it may 
be checked by insertion into (4.4) or (4.6) and use of elementary algebra and 
manipulations with binomial coefficients. 

The general solution to (4.4) and (4.5), given £, is 

where 

(4.7) 

c*d) = Ua+D _ u{i+i) f o r n 1, 2, 

,<*> = 
[n/i] 

'In - rz\ for n 0, 1, 2, 
o (-2)2 

We show in the next subsection how the solutions for the dual pairs of re-
currences in the GZ- and £Z*-classes are neatly related to elements on the 
diagonals of increasing slope within Pascal's triangle. 

Geometric interpretation 

Consider Pascal's triangle, for the binomial coefficients, drawn as a 45°  
triangle rather than the usual equilaterial triangle, thus: 

0 ] 
1 J 
2 J 
3 
4 J 
5 ] 
6 ^ ^ ] 
7 ^ ^ ] 
8 ^ ^ ] 
9 ^ 

1 
2 
3 

I 4 

^ ^ 5 ^ 
^ ? 6 

7\ 9 

^ ^ 6 ^ ^ 4 ^ 
^.10 10 

15 20 
21 35 
28 56 
36 84 

^ 

1 
5 
15 
35 
70 
126 

13 - *<» ) 

31 0 flu> ) 

1 
6 1 
2 7 
56 28 
126 84 

Lucas diago 

8 1 
36 9 

Then c 
slope 

(i) 
n+l 

- is iust the sum of all the binomial coefficients on the line of 
7. j 

that starts on the left end of the nth row. In particular, the n 7th 
Fibonacci number is the sum of the numbers on a 45°  line (slope i = 1) starting 

row (these lines are the well-known Lucas diagonals). As an at the ,th 

example, for the case i = 3, 

.(3) .(3) 
-9+1-3 (l)-(DAD- 1 + 6 + 3 10. 
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C g </Lg UQ 

The geometric interpretation also suggests the results c® = 2 and c^ = n 
corresponding to lines of slope 0 (horizontal) and °°  (vertical), respectively. 

As an example in the GZ^-class, again taking i = 3, and with n = 9, we get 

'X) - f ® - O - £(})] 
= 432 - 224 = 208. 

Inspection of Pascal's triangle shows that u^ is a weighted sum of the 
elements on the upward diagonal of slope i which begins at the first element of 
the nth row: the weights are powers of 2 as given in (4.7). 

Hence, <?*^ is the difference of weighted sums from the adjacent diagonals 
beginning on the nth and (ji - l)t h rows. 
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